File size: 4,955 Bytes
ab3e230
f76d1f9
 
ab3e230
 
f76d1f9
 
ab3e230
5393373
 
5679334
ab3e230
a7bd55b
ab3e230
 
5089df8
 
 
 
 
 
 
 
 
 
 
 
ab3e230
 
 
 
 
 
 
5393373
ab3e230
5393373
099d45a
 
ab3e230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02cdd7
 
ab3e230
 
5393373
 
ab3e230
 
 
 
 
 
5393373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3e230
 
 
 
 
 
f02cdd7
ab3e230
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
language:
- ur
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- ur
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: ''
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8.0
      type: mozilla-foundation/common_voice_8_0
      args: ur
    metrics:
    - name: Test WER
      type: wer
      value: 47.38
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [HarrisDePerceptron/xls-r-300m-ur](https://huggingface.co/HarrisDePerceptron/xls-r-300m-ur) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0517
- WER: 0.5151291512915129
- CER: 0.23689640940982254

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.2991        | 1.96  | 100  | 0.9769          | 0.6627 |
| 1.3415        | 3.92  | 200  | 0.9701          | 0.6594 |
| 1.2998        | 5.88  | 300  | 0.9678          | 0.6668 |
| 1.2881        | 7.84  | 400  | 0.9650          | 0.6613 |
| 1.2369        | 9.8   | 500  | 0.9392          | 0.6502 |
| 1.2293        | 11.76 | 600  | 0.9536          | 0.6480 |
| 1.1709        | 13.73 | 700  | 0.9265          | 0.6402 |
| 1.1492        | 15.69 | 800  | 0.9636          | 0.6506 |
| 1.1044        | 17.65 | 900  | 0.9305          | 0.6351 |
| 1.0704        | 19.61 | 1000 | 0.9329          | 0.6280 |
| 1.0039        | 21.57 | 1100 | 0.9413          | 0.6295 |
| 0.9756        | 23.53 | 1200 | 0.9718          | 0.6185 |
| 0.9633        | 25.49 | 1300 | 0.9731          | 0.6133 |
| 0.932         | 27.45 | 1400 | 0.9659          | 0.6199 |
| 0.9252        | 29.41 | 1500 | 0.9766          | 0.6196 |
| 0.9172        | 31.37 | 1600 | 1.0052          | 0.6199 |
| 0.8733        | 33.33 | 1700 | 0.9955          | 0.6203 |
| 0.868         | 35.29 | 1800 | 1.0069          | 0.6240 |
| 0.8547        | 37.25 | 1900 | 0.9783          | 0.6258 |
| 0.8451        | 39.22 | 2000 | 0.9845          | 0.6052 |
| 0.8374        | 41.18 | 2100 | 0.9496          | 0.6137 |
| 0.8153        | 43.14 | 2200 | 0.9756          | 0.6122 |
| 0.8134        | 45.1  | 2300 | 0.9712          | 0.6096 |
| 0.8019        | 47.06 | 2400 | 0.9565          | 0.5970 |
| 0.7746        | 49.02 | 2500 | 0.9864          | 0.6096 |
| 0.7664        | 50.98 | 2600 | 0.9988          | 0.6092 |
| 0.7708        | 52.94 | 2700 | 1.0181          | 0.6255 |
| 0.7468        | 54.9  | 2800 | 0.9918          | 0.6148 |
| 0.7241        | 56.86 | 2900 | 1.0150          | 0.6018 |
| 0.7165        | 58.82 | 3000 | 1.0439          | 0.6063 |
| 0.7104        | 60.78 | 3100 | 1.0016          | 0.6037 |
| 0.6954        | 62.75 | 3200 | 1.0117          | 0.5970 |
| 0.6753        | 64.71 | 3300 | 1.0191          | 0.6037 |
| 0.6803        | 66.67 | 3400 | 1.0190          | 0.6033 |
| 0.661         | 68.63 | 3500 | 1.0284          | 0.6007 |
| 0.6597        | 70.59 | 3600 | 1.0060          | 0.5967 |
| 0.6398        | 72.55 | 3700 | 1.0372          | 0.6048 |
| 0.6105        | 74.51 | 3800 | 1.0048          | 0.6044 |
| 0.6164        | 76.47 | 3900 | 1.0398          | 0.6148 |
| 0.6354        | 78.43 | 4000 | 1.0272          | 0.6133 |
| 0.5952        | 80.39 | 4100 | 1.0364          | 0.6081 |
| 0.5814        | 82.35 | 4200 | 1.0418          | 0.6092 |
| 0.6079        | 84.31 | 4300 | 1.0277          | 0.5967 |
| 0.5748        | 86.27 | 4400 | 1.0362          | 0.6041 |
| 0.5624        | 88.24 | 4500 | 1.0427          | 0.6007 |
| 0.5767        | 90.2  | 4600 | 1.0370          | 0.5919 |
| 0.5793        | 92.16 | 4700 | 1.0442          | 0.6011 |
| 0.547         | 94.12 | 4800 | 1.0516          | 0.5982 |
| 0.5513        | 96.08 | 4900 | 1.0461          | 0.5989 |
| 0.5429        | 98.04 | 5000 | 1.0504          | 0.5996 |
| 0.5404        | 100.0 | 5100 | 1.0517          | 0.5967 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0