File size: 49,082 Bytes
99a5bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
import json
import math
import os
import sys
import warnings

import torch
import numpy as np
from PIL import Image, ImageFilter, ImageOps
import random
import cv2
from skimage import exposure
from typing import Any, Dict, List, Optional

import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.paths as paths
import modules.face_restoration
import modules.images as images
import modules.styles
import modules.sd_models as sd_models
import modules.sd_vae as sd_vae
import logging
from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion

from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType

# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8


def setup_color_correction(image):
    logging.info("Calibrating color correction.")
    correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
    return correction_target


def apply_color_correction(correction, original_image):
    logging.info("Applying color correction.")
    image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
        cv2.cvtColor(
            np.asarray(original_image),
            cv2.COLOR_RGB2LAB
        ),
        correction,
        channel_axis=2
    ), cv2.COLOR_LAB2RGB).astype("uint8"))

    image = blendLayers(image, original_image, BlendType.LUMINOSITY)

    return image


def apply_overlay(image, paste_loc, index, overlays):
    if overlays is None or index >= len(overlays):
        return image

    overlay = overlays[index]

    if paste_loc is not None:
        x, y, w, h = paste_loc
        base_image = Image.new('RGBA', (overlay.width, overlay.height))
        image = images.resize_image(1, image, w, h)
        base_image.paste(image, (x, y))
        image = base_image

    image = image.convert('RGBA')
    image.alpha_composite(overlay)
    image = image.convert('RGB')

    return image


def txt2img_image_conditioning(sd_model, x, width, height):
    if sd_model.model.conditioning_key not in {'hybrid', 'concat'}:
        # Dummy zero conditioning if we're not using inpainting model.
        # Still takes up a bit of memory, but no encoder call.
        # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
        return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)

    # The "masked-image" in this case will just be all zeros since the entire image is masked.
    image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
    image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))

    # Add the fake full 1s mask to the first dimension.
    image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
    image_conditioning = image_conditioning.to(x.dtype)

    return image_conditioning


class StableDiffusionProcessing:
    """
    The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
    """
    def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
        if sampler_index is not None:
            print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)

        self.outpath_samples: str = outpath_samples
        self.outpath_grids: str = outpath_grids
        self.prompt: str = prompt
        self.prompt_for_display: str = None
        self.negative_prompt: str = (negative_prompt or "")
        self.styles: list = styles or []
        self.seed: int = seed
        self.subseed: int = subseed
        self.subseed_strength: float = subseed_strength
        self.seed_resize_from_h: int = seed_resize_from_h
        self.seed_resize_from_w: int = seed_resize_from_w
        self.sampler_name: str = sampler_name
        self.batch_size: int = batch_size
        self.n_iter: int = n_iter
        self.steps: int = steps
        self.cfg_scale: float = cfg_scale
        self.width: int = width
        self.height: int = height
        self.restore_faces: bool = restore_faces
        self.tiling: bool = tiling
        self.do_not_save_samples: bool = do_not_save_samples
        self.do_not_save_grid: bool = do_not_save_grid
        self.extra_generation_params: dict = extra_generation_params or {}
        self.overlay_images = overlay_images
        self.eta = eta
        self.do_not_reload_embeddings = do_not_reload_embeddings
        self.paste_to = None
        self.color_corrections = None
        self.denoising_strength: float = denoising_strength
        self.sampler_noise_scheduler_override = None
        self.ddim_discretize = ddim_discretize or opts.ddim_discretize
        self.s_churn = s_churn or opts.s_churn
        self.s_tmin = s_tmin or opts.s_tmin
        self.s_tmax = s_tmax or float('inf')  # not representable as a standard ui option
        self.s_noise = s_noise or opts.s_noise
        self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
        self.override_settings_restore_afterwards = override_settings_restore_afterwards
        self.is_using_inpainting_conditioning = False
        self.disable_extra_networks = False

        if not seed_enable_extras:
            self.subseed = -1
            self.subseed_strength = 0
            self.seed_resize_from_h = 0
            self.seed_resize_from_w = 0

        self.scripts = None
        self.script_args = script_args
        self.all_prompts = None
        self.all_negative_prompts = None
        self.all_seeds = None
        self.all_subseeds = None
        self.iteration = 0

    @property
    def sd_model(self):
        return shared.sd_model

    def txt2img_image_conditioning(self, x, width=None, height=None):
        self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}

        return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)

    def depth2img_image_conditioning(self, source_image):
        # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
        transformer = AddMiDaS(model_type="dpt_hybrid")
        transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
        midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
        midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)

        conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
        conditioning = torch.nn.functional.interpolate(
            self.sd_model.depth_model(midas_in),
            size=conditioning_image.shape[2:],
            mode="bicubic",
            align_corners=False,
        )

        (depth_min, depth_max) = torch.aminmax(conditioning)
        conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
        return conditioning

    def edit_image_conditioning(self, source_image):
        conditioning_image = self.sd_model.encode_first_stage(source_image).mode()

        return conditioning_image

    def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
        self.is_using_inpainting_conditioning = True

        # Handle the different mask inputs
        if image_mask is not None:
            if torch.is_tensor(image_mask):
                conditioning_mask = image_mask
            else:
                conditioning_mask = np.array(image_mask.convert("L"))
                conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
                conditioning_mask = torch.from_numpy(conditioning_mask[None, None])

                # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
                conditioning_mask = torch.round(conditioning_mask)
        else:
            conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])

        # Create another latent image, this time with a masked version of the original input.
        # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
        conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
        conditioning_image = torch.lerp(
            source_image,
            source_image * (1.0 - conditioning_mask),
            getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
        )

        # Encode the new masked image using first stage of network.
        conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))

        # Create the concatenated conditioning tensor to be fed to `c_concat`
        conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
        conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
        image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
        image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)

        return image_conditioning

    def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
        source_image = devices.cond_cast_float(source_image)

        # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
        # identify itself with a field common to all models. The conditioning_key is also hybrid.
        if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
            return self.depth2img_image_conditioning(source_image)

        if self.sd_model.cond_stage_key == "edit":
            return self.edit_image_conditioning(source_image)

        if self.sampler.conditioning_key in {'hybrid', 'concat'}:
            return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)

        # Dummy zero conditioning if we're not using inpainting or depth model.
        return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)

    def init(self, all_prompts, all_seeds, all_subseeds):
        pass

    def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
        raise NotImplementedError()

    def close(self):
        self.sampler = None


class Processed:
    def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
        self.images = images_list
        self.prompt = p.prompt
        self.negative_prompt = p.negative_prompt
        self.seed = seed
        self.subseed = subseed
        self.subseed_strength = p.subseed_strength
        self.info = info
        self.comments = comments
        self.width = p.width
        self.height = p.height
        self.sampler_name = p.sampler_name
        self.cfg_scale = p.cfg_scale
        self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
        self.steps = p.steps
        self.batch_size = p.batch_size
        self.restore_faces = p.restore_faces
        self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
        self.sd_model_hash = shared.sd_model.sd_model_hash
        self.seed_resize_from_w = p.seed_resize_from_w
        self.seed_resize_from_h = p.seed_resize_from_h
        self.denoising_strength = getattr(p, 'denoising_strength', None)
        self.extra_generation_params = p.extra_generation_params
        self.index_of_first_image = index_of_first_image
        self.styles = p.styles
        self.job_timestamp = state.job_timestamp
        self.clip_skip = opts.CLIP_stop_at_last_layers

        self.eta = p.eta
        self.ddim_discretize = p.ddim_discretize
        self.s_churn = p.s_churn
        self.s_tmin = p.s_tmin
        self.s_tmax = p.s_tmax
        self.s_noise = p.s_noise
        self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
        self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
        self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
        self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
        self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
        self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning

        self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
        self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
        self.all_seeds = all_seeds or p.all_seeds or [self.seed]
        self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
        self.infotexts = infotexts or [info]

    def js(self):
        obj = {
            "prompt": self.all_prompts[0],
            "all_prompts": self.all_prompts,
            "negative_prompt": self.all_negative_prompts[0],
            "all_negative_prompts": self.all_negative_prompts,
            "seed": self.seed,
            "all_seeds": self.all_seeds,
            "subseed": self.subseed,
            "all_subseeds": self.all_subseeds,
            "subseed_strength": self.subseed_strength,
            "width": self.width,
            "height": self.height,
            "sampler_name": self.sampler_name,
            "cfg_scale": self.cfg_scale,
            "steps": self.steps,
            "batch_size": self.batch_size,
            "restore_faces": self.restore_faces,
            "face_restoration_model": self.face_restoration_model,
            "sd_model_hash": self.sd_model_hash,
            "seed_resize_from_w": self.seed_resize_from_w,
            "seed_resize_from_h": self.seed_resize_from_h,
            "denoising_strength": self.denoising_strength,
            "extra_generation_params": self.extra_generation_params,
            "index_of_first_image": self.index_of_first_image,
            "infotexts": self.infotexts,
            "styles": self.styles,
            "job_timestamp": self.job_timestamp,
            "clip_skip": self.clip_skip,
            "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
        }

        return json.dumps(obj)

    def infotext(self, p: StableDiffusionProcessing, index):
        return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)


# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
def slerp(val, low, high):
    low_norm = low/torch.norm(low, dim=1, keepdim=True)
    high_norm = high/torch.norm(high, dim=1, keepdim=True)
    dot = (low_norm*high_norm).sum(1)

    if dot.mean() > 0.9995:
        return low * val + high * (1 - val)

    omega = torch.acos(dot)
    so = torch.sin(omega)
    res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
    return res


def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
    eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
    xs = []

    # if we have multiple seeds, this means we are working with batch size>1; this then
    # enables the generation of additional tensors with noise that the sampler will use during its processing.
    # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
    # produce the same images as with two batches [100], [101].
    if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
        sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
    else:
        sampler_noises = None

    for i, seed in enumerate(seeds):
        noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)

        subnoise = None
        if subseeds is not None:
            subseed = 0 if i >= len(subseeds) else subseeds[i]

            subnoise = devices.randn(subseed, noise_shape)

        # randn results depend on device; gpu and cpu get different results for same seed;
        # the way I see it, it's better to do this on CPU, so that everyone gets same result;
        # but the original script had it like this, so I do not dare change it for now because
        # it will break everyone's seeds.
        noise = devices.randn(seed, noise_shape)

        if subnoise is not None:
            noise = slerp(subseed_strength, noise, subnoise)

        if noise_shape != shape:
            x = devices.randn(seed, shape)
            dx = (shape[2] - noise_shape[2]) // 2
            dy = (shape[1] - noise_shape[1]) // 2
            w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
            h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
            tx = 0 if dx < 0 else dx
            ty = 0 if dy < 0 else dy
            dx = max(-dx, 0)
            dy = max(-dy, 0)

            x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
            noise = x

        if sampler_noises is not None:
            cnt = p.sampler.number_of_needed_noises(p)

            if eta_noise_seed_delta > 0:
                torch.manual_seed(seed + eta_noise_seed_delta)

            for j in range(cnt):
                sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))

        xs.append(noise)

    if sampler_noises is not None:
        p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]

    x = torch.stack(xs).to(shared.device)
    return x


def decode_first_stage(model, x):
    with devices.autocast(disable=x.dtype == devices.dtype_vae):
        x = model.decode_first_stage(x)

    return x


def get_fixed_seed(seed):
    if seed is None or seed == '' or seed == -1:
        return int(random.randrange(4294967294))

    return seed


def fix_seed(p):
    p.seed = get_fixed_seed(p.seed)
    p.subseed = get_fixed_seed(p.subseed)


def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
    index = position_in_batch + iteration * p.batch_size

    clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)

    generation_params = {
        "Steps": p.steps,
        "Sampler": p.sampler_name,
        "CFG scale": p.cfg_scale,
        "Image CFG scale": getattr(p, 'image_cfg_scale', None),
        "Seed": all_seeds[index],
        "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
        "Size": f"{p.width}x{p.height}",
        "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
        "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
        "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
        "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
        "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
        "Denoising strength": getattr(p, 'denoising_strength', None),
        "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
        "Clip skip": None if clip_skip <= 1 else clip_skip,
        "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
    }

    generation_params.update(p.extra_generation_params)

    generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])

    negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""

    return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()


def process_images(p: StableDiffusionProcessing) -> Processed:
    stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}

    try:
        for k, v in p.override_settings.items():
            setattr(opts, k, v)

            if k == 'sd_model_checkpoint':
                sd_models.reload_model_weights()

            if k == 'sd_vae':
                sd_vae.reload_vae_weights()

        res = process_images_inner(p)

    finally:
        # restore opts to original state
        if p.override_settings_restore_afterwards:
            for k, v in stored_opts.items():
                setattr(opts, k, v)
                if k == 'sd_model_checkpoint':
                    sd_models.reload_model_weights()

                if k == 'sd_vae':
                    sd_vae.reload_vae_weights()

    return res


def process_images_inner(p: StableDiffusionProcessing) -> Processed:
    """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""

    if type(p.prompt) == list:
        assert(len(p.prompt) > 0)
    else:
        assert p.prompt is not None

    devices.torch_gc()

    seed = get_fixed_seed(p.seed)
    subseed = get_fixed_seed(p.subseed)

    modules.sd_hijack.model_hijack.apply_circular(p.tiling)
    modules.sd_hijack.model_hijack.clear_comments()

    comments = {}

    if type(p.prompt) == list:
        p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
    else:
        p.all_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]

    if type(p.negative_prompt) == list:
        p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
    else:
        p.all_negative_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]

    if type(seed) == list:
        p.all_seeds = seed
    else:
        p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]

    if type(subseed) == list:
        p.all_subseeds = subseed
    else:
        p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]

    def infotext(iteration=0, position_in_batch=0):
        return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)

    if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
        model_hijack.embedding_db.load_textual_inversion_embeddings()

    if p.scripts is not None:
        p.scripts.process(p)

    infotexts = []
    output_images = []

    cached_uc = [None, None]
    cached_c = [None, None]

    def get_conds_with_caching(function, required_prompts, steps, cache):
        """
        Returns the result of calling function(shared.sd_model, required_prompts, steps)
        using a cache to store the result if the same arguments have been used before.

        cache is an array containing two elements. The first element is a tuple
        representing the previously used arguments, or None if no arguments
        have been used before. The second element is where the previously
        computed result is stored.
        """

        if cache[0] is not None and (required_prompts, steps) == cache[0]:
            return cache[1]

        with devices.autocast():
            cache[1] = function(shared.sd_model, required_prompts, steps)

        cache[0] = (required_prompts, steps)
        return cache[1]

    with torch.no_grad(), p.sd_model.ema_scope():
        with devices.autocast():
            p.init(p.all_prompts, p.all_seeds, p.all_subseeds)

            # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
            if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
                sd_vae_approx.model()

        if state.job_count == -1:
            state.job_count = p.n_iter

        for n in range(p.n_iter):
            p.iteration = n

            if state.skipped:
                state.skipped = False

            if state.interrupted:
                break

            prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
            negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
            seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
            subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]

            if len(prompts) == 0:
                break

            prompts, extra_network_data = extra_networks.parse_prompts(prompts)

            if not p.disable_extra_networks:
                with devices.autocast():
                    extra_networks.activate(p, extra_network_data)

            if p.scripts is not None:
                p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)

            # params.txt should be saved after scripts.process_batch, since the
            # infotext could be modified by that callback
            # Example: a wildcard processed by process_batch sets an extra model
            # strength, which is saved as "Model Strength: 1.0" in the infotext
            if n == 0:
                with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
                    processed = Processed(p, [], p.seed, "")
                    file.write(processed.infotext(p, 0))

            uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
            c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)

            if len(model_hijack.comments) > 0:
                for comment in model_hijack.comments:
                    comments[comment] = 1

            if p.n_iter > 1:
                shared.state.job = f"Batch {n+1} out of {p.n_iter}"

            with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
                samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)

            x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
            for x in x_samples_ddim:
                devices.test_for_nans(x, "vae")

            x_samples_ddim = torch.stack(x_samples_ddim).float()
            x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)

            del samples_ddim

            if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
                lowvram.send_everything_to_cpu()

            devices.torch_gc()

            if p.scripts is not None:
                p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)

            for i, x_sample in enumerate(x_samples_ddim):
                x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
                x_sample = x_sample.astype(np.uint8)

                if p.restore_faces:
                    if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
                        images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")

                    devices.torch_gc()

                    x_sample = modules.face_restoration.restore_faces(x_sample)
                    devices.torch_gc()

                image = Image.fromarray(x_sample)

                if p.scripts is not None:
                    pp = scripts.PostprocessImageArgs(image)
                    p.scripts.postprocess_image(p, pp)
                    image = pp.image

                if p.color_corrections is not None and i < len(p.color_corrections):
                    if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
                        image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
                        images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
                    image = apply_color_correction(p.color_corrections[i], image)

                image = apply_overlay(image, p.paste_to, i, p.overlay_images)

                if opts.samples_save and not p.do_not_save_samples:
                    images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)

                text = infotext(n, i)
                infotexts.append(text)
                if opts.enable_pnginfo:
                    image.info["parameters"] = text
                output_images.append(image)

            del x_samples_ddim

            devices.torch_gc()

            state.nextjob()

        p.color_corrections = None

        index_of_first_image = 0
        unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
        if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
            grid = images.image_grid(output_images, p.batch_size)

            if opts.return_grid:
                text = infotext()
                infotexts.insert(0, text)
                if opts.enable_pnginfo:
                    grid.info["parameters"] = text
                output_images.insert(0, grid)
                index_of_first_image = 1

            if opts.grid_save:
                images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)

    if not p.disable_extra_networks:
        extra_networks.deactivate(p, extra_network_data)

    devices.torch_gc()

    res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)

    if p.scripts is not None:
        p.scripts.postprocess(p, res)

    return res


def old_hires_fix_first_pass_dimensions(width, height):
    """old algorithm for auto-calculating first pass size"""

    desired_pixel_count = 512 * 512
    actual_pixel_count = width * height
    scale = math.sqrt(desired_pixel_count / actual_pixel_count)
    width = math.ceil(scale * width / 64) * 64
    height = math.ceil(scale * height / 64) * 64

    return width, height


class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
    sampler = None

    def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, **kwargs):
        super().__init__(**kwargs)
        self.enable_hr = enable_hr
        self.denoising_strength = denoising_strength
        self.hr_scale = hr_scale
        self.hr_upscaler = hr_upscaler
        self.hr_second_pass_steps = hr_second_pass_steps
        self.hr_resize_x = hr_resize_x
        self.hr_resize_y = hr_resize_y
        self.hr_upscale_to_x = hr_resize_x
        self.hr_upscale_to_y = hr_resize_y

        if firstphase_width != 0 or firstphase_height != 0:
            self.hr_upscale_to_x = self.width
            self.hr_upscale_to_y = self.height
            self.width = firstphase_width
            self.height = firstphase_height

        self.truncate_x = 0
        self.truncate_y = 0
        self.applied_old_hires_behavior_to = None

    def init(self, all_prompts, all_seeds, all_subseeds):
        if self.enable_hr:
            if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
                self.hr_resize_x = self.width
                self.hr_resize_y = self.height
                self.hr_upscale_to_x = self.width
                self.hr_upscale_to_y = self.height

                self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
                self.applied_old_hires_behavior_to = (self.width, self.height)

            if self.hr_resize_x == 0 and self.hr_resize_y == 0:
                self.extra_generation_params["Hires upscale"] = self.hr_scale
                self.hr_upscale_to_x = int(self.width * self.hr_scale)
                self.hr_upscale_to_y = int(self.height * self.hr_scale)
            else:
                self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"

                if self.hr_resize_y == 0:
                    self.hr_upscale_to_x = self.hr_resize_x
                    self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
                elif self.hr_resize_x == 0:
                    self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
                    self.hr_upscale_to_y = self.hr_resize_y
                else:
                    target_w = self.hr_resize_x
                    target_h = self.hr_resize_y
                    src_ratio = self.width / self.height
                    dst_ratio = self.hr_resize_x / self.hr_resize_y

                    if src_ratio < dst_ratio:
                        self.hr_upscale_to_x = self.hr_resize_x
                        self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
                    else:
                        self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
                        self.hr_upscale_to_y = self.hr_resize_y

                    self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
                    self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f

            # special case: the user has chosen to do nothing
            if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
                self.enable_hr = False
                self.denoising_strength = None
                self.extra_generation_params.pop("Hires upscale", None)
                self.extra_generation_params.pop("Hires resize", None)
                return

            if not state.processing_has_refined_job_count:
                if state.job_count == -1:
                    state.job_count = self.n_iter

                shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
                state.job_count = state.job_count * 2
                state.processing_has_refined_job_count = True

            if self.hr_second_pass_steps:
                self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps

            if self.hr_upscaler is not None:
                self.extra_generation_params["Hires upscaler"] = self.hr_upscaler

    def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
        self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)

        latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
        if self.enable_hr and latent_scale_mode is None:
            assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"

        x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
        samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))

        if not self.enable_hr:
            return samples

        target_width = self.hr_upscale_to_x
        target_height = self.hr_upscale_to_y

        def save_intermediate(image, index):
            """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""

            if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
                return

            if not isinstance(image, Image.Image):
                image = sd_samplers.sample_to_image(image, index, approximation=0)

            info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
            images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")

        if latent_scale_mode is not None:
            for i in range(samples.shape[0]):
                save_intermediate(samples, i)

            samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])

            # Avoid making the inpainting conditioning unless necessary as
            # this does need some extra compute to decode / encode the image again.
            if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
                image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
            else:
                image_conditioning = self.txt2img_image_conditioning(samples)
        else:
            decoded_samples = decode_first_stage(self.sd_model, samples)
            lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)

            batch_images = []
            for i, x_sample in enumerate(lowres_samples):
                x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
                x_sample = x_sample.astype(np.uint8)
                image = Image.fromarray(x_sample)

                save_intermediate(image, i)

                image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
                image = np.array(image).astype(np.float32) / 255.0
                image = np.moveaxis(image, 2, 0)
                batch_images.append(image)

            decoded_samples = torch.from_numpy(np.array(batch_images))
            decoded_samples = decoded_samples.to(shared.device)
            decoded_samples = 2. * decoded_samples - 1.

            samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))

            image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)

        shared.state.nextjob()

        img2img_sampler_name = self.sampler_name if self.sampler_name != 'PLMS' else 'DDIM'  # PLMS does not support img2img so we just silently switch ot DDIM
        self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)

        samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]

        noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)

        # GC now before running the next img2img to prevent running out of memory
        x = None
        devices.torch_gc()

        samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)

        return samples


class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
    sampler = None

    def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
        super().__init__(**kwargs)

        self.init_images = init_images
        self.resize_mode: int = resize_mode
        self.denoising_strength: float = denoising_strength
        self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
        self.init_latent = None
        self.image_mask = mask
        self.latent_mask = None
        self.mask_for_overlay = None
        self.mask_blur = mask_blur
        self.inpainting_fill = inpainting_fill
        self.inpaint_full_res = inpaint_full_res
        self.inpaint_full_res_padding = inpaint_full_res_padding
        self.inpainting_mask_invert = inpainting_mask_invert
        self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
        self.mask = None
        self.nmask = None
        self.image_conditioning = None

    def init(self, all_prompts, all_seeds, all_subseeds):
        self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
        crop_region = None

        image_mask = self.image_mask

        if image_mask is not None:
            image_mask = image_mask.convert('L')

            if self.inpainting_mask_invert:
                image_mask = ImageOps.invert(image_mask)

            if self.mask_blur > 0:
                image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))

            if self.inpaint_full_res:
                self.mask_for_overlay = image_mask
                mask = image_mask.convert('L')
                crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
                crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
                x1, y1, x2, y2 = crop_region

                mask = mask.crop(crop_region)
                image_mask = images.resize_image(2, mask, self.width, self.height)
                self.paste_to = (x1, y1, x2-x1, y2-y1)
            else:
                image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
                np_mask = np.array(image_mask)
                np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
                self.mask_for_overlay = Image.fromarray(np_mask)

            self.overlay_images = []

        latent_mask = self.latent_mask if self.latent_mask is not None else image_mask

        add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
        if add_color_corrections:
            self.color_corrections = []
        imgs = []
        for img in self.init_images:
            image = images.flatten(img, opts.img2img_background_color)

            if crop_region is None and self.resize_mode != 3:
                image = images.resize_image(self.resize_mode, image, self.width, self.height)

            if image_mask is not None:
                image_masked = Image.new('RGBa', (image.width, image.height))
                image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))

                self.overlay_images.append(image_masked.convert('RGBA'))

            # crop_region is not None if we are doing inpaint full res
            if crop_region is not None:
                image = image.crop(crop_region)
                image = images.resize_image(2, image, self.width, self.height)

            if image_mask is not None:
                if self.inpainting_fill != 1:
                    image = masking.fill(image, latent_mask)

            if add_color_corrections:
                self.color_corrections.append(setup_color_correction(image))

            image = np.array(image).astype(np.float32) / 255.0
            image = np.moveaxis(image, 2, 0)

            imgs.append(image)

        if len(imgs) == 1:
            batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
            if self.overlay_images is not None:
                self.overlay_images = self.overlay_images * self.batch_size

            if self.color_corrections is not None and len(self.color_corrections) == 1:
                self.color_corrections = self.color_corrections * self.batch_size

        elif len(imgs) <= self.batch_size:
            self.batch_size = len(imgs)
            batch_images = np.array(imgs)
        else:
            raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")

        image = torch.from_numpy(batch_images)
        image = 2. * image - 1.
        image = image.to(shared.device)

        self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))

        if self.resize_mode == 3:
            self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")

        if image_mask is not None:
            init_mask = latent_mask
            latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
            latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
            latmask = latmask[0]
            latmask = np.around(latmask)
            latmask = np.tile(latmask[None], (4, 1, 1))

            self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
            self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)

            # this needs to be fixed to be done in sample() using actual seeds for batches
            if self.inpainting_fill == 2:
                self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
            elif self.inpainting_fill == 3:
                self.init_latent = self.init_latent * self.mask

        self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)

    def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
        x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)

        if self.initial_noise_multiplier != 1.0:
            self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
            x *= self.initial_noise_multiplier

        samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)

        if self.mask is not None:
            samples = samples * self.nmask + self.init_latent * self.mask

        del x
        devices.torch_gc()

        return samples