File size: 7,804 Bytes
f8519d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import openai
import tiktoken
import json
import os

# import replicate

# for hugging face inference endpoints for codellama
import requests

from typing import Optional

from tenacity import (
    retry,
    stop_after_attempt,
    wait_random_exponential,
)  # for exponential backoff

# system message is used in openai_request()
system_message = """Provide the next move in the chess game. Only provide the move, no move numbers."""

# dollars per 1k tokens, per openai.com/pricing
pricing_dict = {
    "gpt-4": 0.03,
    "gpt-4-0301": 0.03,
    "gpt-4-0613": 0.03,
    "gpt-3.5-turbo": 0.0015,
    "gpt-3.5-turbo-0301": 0.0015,
    "gpt-3.5-turbo-0613": 0.0015,
    "gpt-3.5-turbo-16k": 0.003,
    "babbage": 0.0005,
    "gpt-3.5-turbo-instruct": 0.0015,
}

MAX_TOKENS = 10

completion_models = [
    "gpt-3.5-turbo-instruct",
    "babbage",
    "davinci",
]


# tenacity is to handle anytime a request fails
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
def get_gpt_response(
    prompt: str, model: str = "gpt-4", temperature: float = 0.0
) -> Optional[str]:
    try:
        messages = []
        # system message is used in openai_request()
        # system_message_dict = {
        #     "role": "system",
        #     "content": system_message,
        # }
        initial_message = {"role": "user", "content": prompt}
        messages.append(initial_message)

        record_messages(messages, model)

        # num_tokens = count_all_tokens(model, messages)
        # prompt_cost = get_prompt_cost(model, num_tokens)
        # print("prompt cost in $:", prompt_cost)

        if model in completion_models:
            response = get_completions_response(model, messages, temperature)
        elif model.startswith("gpt"):
            response = openai_chat_completion_request(model, messages, temperature)
        elif model.startswith("openrouter"):
            response = openrouter_request(model, messages, temperature)
        elif model.startswith("huggingface"):
            response = hugging_face_request(model, messages, temperature)
        elif model.startswith("replicate"):
            response = replicate_request(model, messages, temperature)
        else:
            raise Exception("Invalid model name")

        # response_cost = get_response_cost(model, count_tokens(model, response))
        # print("response cost in $:", response_cost)

        messages.append({"role": "assistant", "content": response})
        record_messages(messages, model)

        return response
    except Exception as e:
        print(f"Error while getting GPT response: {e}")
        return None


def openai_chat_completion_request(
    model: str, messages: list[dict], temperature: float
) -> str:
    system_message_dict = {
        "role": "system",
        "content": system_message,
    }
    messages.append(system_message_dict)
    completion = openai.ChatCompletion.create(
        model=model,
        temperature=temperature,
        messages=messages,
    )
    response = completion.choices[0].message.content
    return response


def openrouter_request(model: str, messages: list[dict], temperature: float) -> str:
    if temperature == 0:
        temperature = 0.001

    with open("gpt_inputs/openrouter_api_key.txt", "r") as f:
        openai.api_key = f.read().strip()

    openai.api_base = "https://openrouter.ai/api/v1"
    OPENROUTER_REFERRER = "https://github.com/adamkarvonen/nanoGPT"

    model = model.replace("openrouter/", "")

    completion = openai.ChatCompletion.create(
        model=model,
        headers={"HTTP-Referer": OPENROUTER_REFERRER},
        messages=messages,
        temperature=temperature,
        max_tokens=MAX_TOKENS,
    )
    response = completion.choices[0].message.content
    return response


def replicate_request(model: str, messages: list[dict], temperature: float) -> str:
    if temperature == 0:
        temperature = 0.001

    with open("gpt_inputs/replicate_api_key.txt", "r") as f:
        api_key = f.read().strip()
    os.environ["REPLICATE_API_TOKEN"] = api_key

    model = model.replace("replicate/", "")

    messages = translate_to_string_input(messages)

    output = replicate.run(
        model,
        input={
            "prompt": messages,
            "max_new_tokens": MAX_TOKENS,
            "temperature": temperature,
        },
    )

    # The meta/llama-2-7b model can stream output as it's running.
    response = ""
    # The predict method returns an iterator, and you can iterate over that output.
    for item in output:
        # https://replicate.com/meta/llama-2-7b/versions/527827021d8756c7ab79fde0abbfaac885c37a3ed5fe23c7465093f0878d55ef/api#output-schema
        response += item

    return response


def hugging_face_request(model: str, messages: list[dict], temperature: float) -> str:
    def query(payload):
        response = requests.post(API_URL, headers=headers, json=payload)
        return response.json()

    messages = translate_to_string_input(messages)
    API_URL = "https://xxxxxxxx.us-east-1.aws.endpoints.huggingface.cloud"
    headers = {
        "Authorization": "Bearer xxxxx",
        "Content-Type": "application/json",
    }

    if temperature == 0:
        temperature = 0.001

    output = query(
        {
            "inputs": messages,
            "parameters": {"temperature": temperature, "max_new_tokens": MAX_TOKENS},
        }
    )

    return output[0]["generated_text"]


def translate_to_string_input(
    openai_messages: list[dict], roles_included: bool = False
):
    # Translate from OpenAI's dict to a single string input
    messages = []
    for message in openai_messages:
        if roles_included:
            messages.append(message["role"] + ": ")
        messages.append(message["content"])
    if roles_included:
        messages.append("assistant: ")
    return "\n".join(messages)


# for gpt-3 models and instruct models
def get_completions_response(
    model: str,
    messages: list[dict] | str,
    temperature: float,
    max_tokens: int = MAX_TOKENS,
) -> str:
    if not isinstance(messages, str):
        prompt = translate_to_string_input(messages, roles_included=False)
    else:
        prompt = messages

    completion = openai.Completion.create(
        model=model, temperature=temperature, prompt=prompt, max_tokens=max_tokens
    )

    response = completion.choices[0].text
    return response


def count_all_tokens(model: str, messages: list[dict[str, str]]) -> int:
    total_tokens = 0
    for message in messages:
        total_tokens += count_tokens(model, message["content"])
    return total_tokens


def count_tokens(model: str, prompt: str) -> int:
    if "gpt" not in model:
        model = "gpt-4"

    encoding = tiktoken.encoding_for_model(model)
    num_tokens = len(encoding.encode(prompt))
    return num_tokens


def get_prompt_cost(model: str, num_tokens: int) -> float:
    # good enough for quick evals
    if model not in pricing_dict:
        return num_tokens * 0.001 * pricing_dict["gpt-4"]
    return num_tokens * 0.001 * pricing_dict[model]


def get_response_cost(model: str, num_tokens: int) -> float:
    # good enough for quick evals
    if model not in pricing_dict:
        return num_tokens * 0.001 * pricing_dict["gpt-4"]

    cost = num_tokens * 0.001 * pricing_dict[model]

    if model == "gpt-4":
        cost *= 2

    return cost


def record_messages(messages: list[dict], model: str):
    # create the conversation in a human-readable format
    conversation_text = ""
    for message in messages:
        conversation_text += message["content"]

    # write the conversation to the next available text file
    with open(f"gpt_outputs/transcript.txt", "w") as f:
        f.write(model + "\n\n")
        f.write(conversation_text)