File size: 2,569 Bytes
f8dac98
 
31cdb25
f8dac98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: HachiML/Mists-7B-v01-not-trained
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Mists-7B-v01-projector-trained
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/siseikatu8/huggingface/runs/2vf2q5nm)
# Mists-7B-v01-projector-trained

This model is a fine-tuned version of [HachiML/Mists-7B-v01-not-trained](https://huggingface.co/HachiML/Mists-7B-v01-not-trained) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5989

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.8704        | 0.0526 | 2000  | 0.7797          |
| 0.7321        | 0.1051 | 4000  | 0.7205          |
| 0.7002        | 0.1577 | 6000  | 0.6992          |
| 0.6735        | 0.2102 | 8000  | 0.6755          |
| 0.6644        | 0.2628 | 10000 | 0.6625          |
| 0.6562        | 0.3153 | 12000 | 0.6539          |
| 0.6512        | 0.3679 | 14000 | 0.6473          |
| 0.638         | 0.4205 | 16000 | 0.6394          |
| 0.6266        | 0.4730 | 18000 | 0.6325          |
| 0.627         | 0.5256 | 20000 | 0.6278          |
| 0.6215        | 0.5781 | 22000 | 0.6241          |
| 0.6192        | 0.6307 | 24000 | 0.6199          |
| 0.6127        | 0.6832 | 26000 | 0.6163          |
| 0.6121        | 0.7358 | 28000 | 0.6131          |
| 0.6078        | 0.7884 | 30000 | 0.6089          |
| 0.5986        | 0.8409 | 32000 | 0.6058          |
| 0.6011        | 0.8935 | 34000 | 0.6027          |
| 0.5934        | 0.9460 | 36000 | 0.6005          |
| 0.589         | 0.9986 | 38000 | 0.5989          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1