|
--- |
|
library_name: transformers |
|
tags: |
|
- time series |
|
- embedding |
|
license: mit |
|
--- |
|
|
|
# MOMENT-1-large-embedding-v0.1 |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This is an embedding model derived from [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large) |
|
|
|
## How to use |
|
```Python |
|
from transformers import AutoConfig, AutoModel, AutoFeatureExtractor |
|
|
|
model_name = "HachiML/MOMENT-1-large-embedding-v0.1" |
|
|
|
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) |
|
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, trust_remote_code=True) |
|
``` |
|
|
|
```Python |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(device) |
|
|
|
model.to(device) |
|
``` |
|
|
|
```Python |
|
hist_ndaq = pd.DataFrame("nasdaq_price_history.csv") |
|
input_data = hist_ndaq[["Open", "High", "Low", "Close", "Volume"]].iloc[:512] |
|
|
|
inputs = feature_extractor(input_data, return_tensors="pt") |
|
# inputs = feature_extractor([input_data, input_data_2], return_tensors="pt") # You can also pass multiple data in a list. |
|
|
|
inputs = inputs.to(device) |
|
outputs = model(**inputs) |
|
print(outputs.embeddings) |
|
``` |