File size: 2,304 Bytes
578c3d0
 
 
9a302a2
c0afbde
 
 
9a302a2
84bbd47
9a302a2
5870307
9a302a2
 
 
 
 
 
64740b8
 
9a302a2
 
 
 
64740b8
 
ac03d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a302a2
ac03d4b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: apache-2.0
---

[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).

## DistilBERT Base model HPU configuration

This model only contains the `GaudiConfig` file for running the [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) model on Habana's Gaudi processors (HPU).

**This model contains no model weights, only a GaudiConfig.**

This enables to specify:
- `use_fused_adam`: whether to use Habana's custom AdamW implementation
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
- `disable_autocast`: whether to disable autocast; this parameter takes precedence over --bf16 flag and is temporary as some scripts produce nan values. 
   In those cases this parameter is already present in huggingface topology Habana gaudi_config.json.

## Usage

The model is instantiated the same way as in the Transformers library.
The only difference is that there are a few new training arguments specific to HPUs.\
This model is supported only in mixed precision training with bf16 type.

[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/question-answering/run_qa.py) is a question-answering example script to fine-tune a model on SQuAD. You can run it with DistilBERT with the following command:
```bash
python run_qa.py \
  --model_name_or_path distilbert-base-uncased \
  --gaudi_config_name Habana/distilbert-base-uncased \
  --dataset_name squad \
  --do_train \
  --do_eval \
  --per_device_train_batch_size 8 \
  --per_device_eval_batch_size 8 \
  --learning_rate 5e-5 \
  --num_train_epochs 3 \
  --max_seq_length 384 \
  --output_dir /tmp/squad/ \
  --use_habana \
  --use_lazy_mode \
  --throughput_warmup_steps 2
```

Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.