practice_swin1 / README.md
HITMYM's picture
update model card README.md
1b7a3ee
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: SEMDataset
          split: train
          args: SEMDataset
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.782051282051282

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5657
  • Accuracy: 0.7821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1465 0.97 16 1.8341 0.3462
1.7722 2.0 33 1.5865 0.4017
1.6005 2.97 49 1.4867 0.4060
1.429 4.0 66 1.3933 0.4487
1.2294 4.97 82 1.2696 0.5385
1.1224 6.0 99 1.2842 0.5641
0.9776 6.97 115 0.9923 0.6197
0.8678 8.0 132 1.1118 0.6368
0.8125 8.97 148 0.8974 0.6624
0.7022 10.0 165 0.8582 0.6838
0.6047 10.97 181 0.7019 0.7393
0.6223 12.0 198 0.6818 0.7308
0.5331 12.97 214 0.8265 0.7051
0.4995 14.0 231 0.6365 0.7521
0.4132 14.97 247 0.6585 0.7308
0.3978 16.0 264 0.5789 0.7692
0.3388 16.97 280 0.6038 0.7650
0.3376 18.0 297 0.5306 0.7821
0.3455 18.97 313 0.5797 0.7692
0.3207 19.39 320 0.5657 0.7821

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3