File size: 15,230 Bytes
0b11a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import pandas as pd\n",
    "scores = {'major_class':{},'sub_class':{}}\n",
    "models = ['Baseline','Seq','Seq-Seq','Seq-Struct','Seq-Rev']\n",
    "models_path = '/nfs/home/yat_ldap/VS_Projects/TransfoRNA-Framework/models/tcga/TransfoRNA_ID'\n",
    "for model1 in models:\n",
    "    summary_pd = pd.read_csv(models_path+'/major_class/'+model1+'/summary_pd.tsv',sep='\\t')\n",
    "    scores['major_class'][model1] = str(summary_pd['B. Acc'].mean()*100)+'+/-'+' ('+str(summary_pd['B. Acc'].std()*100)+')'\n",
    "    summary_pd = pd.read_csv(models_path+'/sub_class/'+model1+'/summary_pd.tsv',sep='\\t')\n",
    "    scores['sub_class'][model1] = str(summary_pd['B. Acc'].mean()*100)+'+/-'+' ('+str(summary_pd['B. Acc'].std()*100) +')'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Baseline': '52.83789870060305+/- (1.0961119898709506)',\n",
       " 'Seq': '97.70018230805728+/- (0.3819207447704567)',\n",
       " 'Seq-Seq': '95.65091330992355+/- (0.4963151975035616)',\n",
       " 'Seq-Struct': '97.71071590680333+/- (0.6173598637101496)',\n",
       " 'Seq-Rev': '97.51224133899979+/- (0.3418133671042992)'}"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "scores['sub_class']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import json\n",
    "import pandas as pd\n",
    "with open('/media/ftp_share/hbdx/data_for_upload/TransfoRNA//data/subclass_to_annotation.json') as f:\n",
    "    mapping_dict = json.load(f)\n",
    "\n",
    "b_acc_sc_to_mc = {}\n",
    "for model1 in models:\n",
    "    b_acc = []\n",
    "    for idx in range(5):\n",
    "        confusion_matrix = pd.read_csv(models_path+'/sub_class/'+model1+f'/embedds/confusion_matrix_{idx}.csv',sep=',',index_col=0)\n",
    "        confusion_matrix.index = confusion_matrix.index.map(mapping_dict)\n",
    "        confusion_matrix.columns = confusion_matrix.columns.map(mapping_dict)\n",
    "        confusion_matrix = confusion_matrix.groupby(confusion_matrix.index).sum().groupby(confusion_matrix.columns,axis=1).sum()\n",
    "        b_acc.append(confusion_matrix.values.diagonal().sum()/confusion_matrix.values.sum())\n",
    "    b_acc_sc_to_mc[model1] = str(pd.Series(b_acc).mean()*100)+'+/-'+' ('+str(pd.Series(b_acc).std()*100)+')'\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Baseline': '89.6182558114013+/- (0.6372156071358975)',\n",
       " 'Seq': '99.66714304286457+/- (0.1404591049684126)',\n",
       " 'Seq-Seq': '99.40702944026852+/- (0.18268320317601783)',\n",
       " 'Seq-Struct': '99.77114728744993+/- (0.06976258667467564)',\n",
       " 'Seq-Rev': '99.70878801385821+/- (0.11954774341354062)'}"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "b_acc_sc_to_mc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import plotly.express as px\n",
    "no_annotation_predictions = {}\n",
    "for model1 in models:\n",
    "    #multiindex\n",
    "    no_annotation_predictions[model1] = pd.read_csv(models_path+'/sub_class/'+model1+'/embedds/no_annotation_embedds.tsv',sep='\\t',header=[0,1],index_col=[0])\n",
    "    no_annotation_predictions[model1].set_index([('RNA Sequences','0')] ,inplace=True)\n",
    "    no_annotation_predictions[model1].index.name = 'RNA Sequences'\n",
    "    no_annotation_predictions[model1] = no_annotation_predictions[model1]['Logits'].idxmax(axis=1)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transforna.src.utils.tcga_post_analysis_utils import correct_labels\n",
    "import pandas as pd\n",
    "correlation = pd.DataFrame(index=models,columns=models)\n",
    "for model1 in models:\n",
    "    for model2 in models:\n",
    "        model1_predictions = correct_labels(no_annotation_predictions[model1],no_annotation_predictions[model2],mapping_dict)\n",
    "        is_equal = model1_predictions == no_annotation_predictions[model2].values\n",
    "        correlation.loc[model1,model2] = is_equal.sum()/len(is_equal)\n",
    "font_size = 20\n",
    "fig = px.imshow(correlation, color_continuous_scale='Blues')\n",
    "#annotate\n",
    "for i in range(len(models)):\n",
    "    for j in range(len(models)):\n",
    "        if i != j:\n",
    "            font = dict(color='black', size=font_size)\n",
    "        else:\n",
    "            font = dict(color='white', size=font_size) \n",
    "        \n",
    "        fig.add_annotation(\n",
    "                x=j, y=i,\n",
    "                text=str(round(correlation.iloc[i,j],2)),\n",
    "                showarrow=False,\n",
    "                font=font\n",
    "            )\n",
    "\n",
    "#set figure size: width and height\n",
    "fig.update_layout(width=800, height=800)\n",
    "\n",
    "fig.update_layout(title='Correlation between models for each sub_class model')\n",
    "#set x and y axis to Models\n",
    "fig.update_xaxes(title_text='Models', tickfont=dict(size=font_size))\n",
    "fig.update_yaxes(title_text='Models', tickfont=dict(size=font_size))\n",
    "fig.show()\n",
    "#save\n",
    "fig.write_image('/nfs/home/yat_ldap/VS_Projects/TransfoRNA-Framework/transforna/bin/figures/correlation_id_models_sub_class.png')\n",
    "fig.write_image('/nfs/home/yat_ldap/VS_Projects/TransfoRNA-Framework/transforna/bin/figures/correlation_id_models_sub_class.svg')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "#create umap for every model from embedds folder\n",
    "models_path = '/nfs/home/yat_ldap/VS_Projects/TransfoRNA-Framework/models/tcga/TransfoRNA_ID'\n",
    "\n",
    "#read\n",
    "sc_embedds = {}\n",
    "mc_embedds = {}\n",
    "sc_to_mc_labels = {}\n",
    "sc_labels = {}\n",
    "mc_labels = {}\n",
    "for model in models:\n",
    "    df = pd.read_csv(models_path+'/sub_class/'+model+'/embedds/train_embedds.tsv',sep='\\t',header=[0,1],index_col=[0])\n",
    "    sc_embedds[model] = df['RNA Embedds'].values\n",
    "    sc_labels[model] = df['Labels']['0']\n",
    "    sc_to_mc_labels[model] = sc_labels[model].map(mapping_dict).values\n",
    "\n",
    "    #major class\n",
    "    df = pd.read_csv(models_path+'/major_class/'+model+'/embedds/train_embedds.tsv',sep='\\t',header=[0,1],index_col=[0])\n",
    "    mc_embedds[model] = df['RNA Embedds'].values\n",
    "    mc_labels[model] = df['Labels']['0']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "import umap\n",
    "#compute umap coordinates\n",
    "sc_umap_coords = {}\n",
    "mc_umap_coords = {}\n",
    "for model in models:\n",
    "    sc_umap_coords[model] = umap.UMAP(n_neighbors=5, min_dist=0.3, n_components=2, metric='euclidean').fit_transform(sc_embedds[model])\n",
    "    mc_umap_coords[model] = umap.UMAP(n_neighbors=5, min_dist=0.3, n_components=2, metric='euclidean').fit_transform(mc_embedds[model])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#plot umap\n",
    "import plotly.express as px\n",
    "import numpy as np\n",
    "\n",
    "mcs = np.unique(sc_to_mc_labels[models[0]])\n",
    "colors = px.colors.qualitative.Plotly\n",
    "color_mapping = dict(zip(mcs,colors))\n",
    "for model in models:\n",
    "   fig = px.scatter(x=sc_umap_coords[model][:,0],y=sc_umap_coords[model][:,1],color=sc_to_mc_labels[model],labels={'color':'Major Class'},title=model, width=800, height=800,\\\n",
    "\n",
    "                        hover_data={'Major Class':sc_labels[model],'Sub Class':sc_to_mc_labels[model]},color_discrete_map=color_mapping)\n",
    "\n",
    "   fig.update_traces(marker=dict(size=1))\n",
    "   #white background\n",
    "   fig.update_layout(plot_bgcolor='rgba(0,0,0,0)')\n",
    "\n",
    "   fig.write_image(models_path+'/sub_class/'+model+'/figures/sc_umap.svg')\n",
    "   fig.write_image(models_path+'/sub_class/'+model+'/figures/sc_umap.png')\n",
    "   fig.show()\n",
    "\n",
    "   #plot umap for major class\n",
    "   fig = px.scatter(x=mc_umap_coords[model][:,0],y=mc_umap_coords[model][:,1],color=mc_labels[model],labels={'color':'Major Class'},title=model, width=800, height=800,\\\n",
    "\n",
    "                        hover_data={'Major Class':mc_labels[model]},color_discrete_map=color_mapping)\n",
    "   fig.update_traces(marker=dict(size=1))\n",
    "   #white background\n",
    "   fig.update_layout(plot_bgcolor='rgba(0,0,0,0)')\n",
    "\n",
    "   fig.write_image(models_path+'/major_class/'+model+'/figures/mc_umap.svg')\n",
    "   fig.write_image(models_path+'/major_class/'+model+'/figures/mc_umap.png')\n",
    "   fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transforna import fold_sequences\n",
    "df = pd.read_csv(models_path+'/major_class/Seq-Struct/embedds/train_embedds.tsv',sep='\\t',header=[0,1],index_col=[0])\n",
    "sec_struct = fold_sequences(df['RNA Sequences']['0'])['structure_37']\n",
    "#sec struct ratio is calculated as the number of non '.' characters divided by the length of the sequence\n",
    "sec_struct_ratio = sec_struct.apply(lambda x: (len(x)-x.count('.'))/len(x))\n",
    "fig = px.scatter(x=mc_umap_coords['Seq-Struct'][:,0],y=mc_umap_coords['Seq-Struct'][:,1],color=sec_struct_ratio,labels={'color':'Base Pairing'},title='Seq-Struct', width=800, height=800,\\\n",
    "                        hover_data={'Major Class':mc_labels['Seq-Struct']}, color_continuous_scale='Viridis',range_color=[0,1])\n",
    "\n",
    "fig.update_traces(marker=dict(size=3))\n",
    "#white background\n",
    "fig.update_layout(plot_bgcolor='rgba(0,0,0,0)')\n",
    "fig.show()\n",
    "fig.write_image(models_path+'/major_class/Seq-Struct/figures/mc_umap_sec_struct.svg')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "from transforna import fold_sequences\n",
    "df = pd.read_csv(models_path+'/sub_class/Seq-Struct/embedds/train_embedds.tsv',sep='\\t',header=[0,1],index_col=[0])\n",
    "sec_struct = fold_sequences(df['RNA Sequences']['0'])['structure_37']\n",
    "#sec struct ratio is calculated as the number of non '.' characters divided by the length of the sequence\n",
    "sec_struct_ratio = sec_struct.apply(lambda x: (len(x)-x.count('.'))/len(x))\n",
    "fig = px.scatter(x=sc_umap_coords['Seq-Struct'][:,0],y=sc_umap_coords['Seq-Struct'][:,1],color=sec_struct_ratio,labels={'color':'Base Pairing'},title='Seq-Struct', width=800, height=800,\\\n",
    "                        hover_data={'Major Class':mc_labels['Seq-Struct']}, color_continuous_scale='Viridis',range_color=[0,1])\n",
    "\n",
    "fig.update_traces(marker=dict(size=3))\n",
    "#white background\n",
    "fig.update_layout(plot_bgcolor='rgba(0,0,0,0)')\n",
    "fig.show()\n",
    "fig.write_image(models_path+'/sub_class/Seq-Struct/figures/sc_umap_sec_struct.svg')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transforna import Results_Handler,get_closest_ngbr_per_split\n",
    "\n",
    "splits = ['train','valid','test','ood','artificial','no_annotation']\n",
    "splits_to_plot = ['test','ood','random','recombined','artificial_affix']\n",
    "renaming_dict= {'test':'ID (test)','ood':'Rare sub-classes','random':'Random','artificial_affix':'Putative 5\\'-adapter prefixes','recombined':'Recombined'}\n",
    "\n",
    "lev_dist_df = pd.DataFrame()\n",
    "for model in models:\n",
    "    results = Results_Handler(models_path+f'/sub_class/{model}/embedds',splits=splits,read_dataset=True)\n",
    "    results.append_loco_variants()\n",
    "    results.get_knn_model()\n",
    "        \n",
    "    #compute levenstein distance per split\n",
    "    for split in splits_to_plot:\n",
    "        split_seqs,split_labels,top_n_seqs,top_n_labels,distances,lev_dist = get_closest_ngbr_per_split(results,split)\n",
    "        #create df from split and levenstein distance\n",
    "        lev_dist_split_df = pd.DataFrame({'split':split,'lev_dist':lev_dist,'seqs':split_seqs,'labels':split_labels,'top_n_seqs':top_n_seqs,'top_n_labels':top_n_labels})\n",
    "        #rename \n",
    "        lev_dist_split_df['split'] = lev_dist_split_df['split'].map(renaming_dict)\n",
    "        lev_dist_split_df['model'] = model\n",
    "        #append \n",
    "        lev_dist_df = pd.concat([lev_dist_df,lev_dist_split_df],axis=0)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#plot the distribution of lev_dist for each split for each model\n",
    "model_thresholds = {'Baseline':0.267,'Seq':0.246,'Seq-Seq':0.272,'Seq-Struct': 0.242,'Seq-Rev':0.237}\n",
    "model_aucs = {'Baseline':0.76,'Seq':0.97,'Seq-Seq':0.96,'Seq-Struct': 0.97,'Seq-Rev':0.97}\n",
    "import seaborn as sns\n",
    "import matplotlib.pyplot as plt\n",
    "sns.set_theme(style=\"whitegrid\")\n",
    "sns.set(rc={'figure.figsize':(15,10)})\n",
    "sns.set(font_scale=1.5)\n",
    "ax = sns.boxplot(x=\"model\", y=\"lev_dist\", hue=\"split\", data=lev_dist_df, palette=\"Set3\",order=models,showfliers = True)\n",
    "#add title\n",
    "ax.set_facecolor('None')\n",
    "plt.title('Levenshtein Distance Distribution per Model on ID')\n",
    "ax.set(xlabel='Model', ylabel='Normalized Levenshtein Distance')\n",
    "#legend background should transparent\n",
    "ax.legend(loc='upper left', bbox_to_anchor=(1.05, 1), borderaxespad=0.,facecolor=None,framealpha=0.0)\n",
    "# add horizontal lines for thresholds for each model while making sure the line is within the boxplot\n",
    "min_val = 0 \n",
    "for model in models:\n",
    "    thresh = model_thresholds[model]\n",
    "    plt.axhline(y=thresh, color='g', linestyle='--',xmin=min_val,xmax=min_val+0.2)\n",
    "    min_val+=0.2\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "transforna",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}