File size: 1,963 Bytes
a835afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: Falconsai/text_summarization
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_summarization_finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_summarization_finetuned

This model is a fine-tuned version of [Falconsai/text_summarization](https://huggingface.co/Falconsai/text_summarization) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2709
- Rouge1: 0.0876
- Rouge2: 0.0826
- Rougel: 0.0876
- Rougelsum: 0.0876
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.3375        | 1.0   | 4000  | 0.2961          | 0.0876 | 0.0826 | 0.0876 | 0.0876    | 19.0    |
| 0.3046        | 2.0   | 8000  | 0.2776          | 0.0876 | 0.0826 | 0.0876 | 0.0876    | 19.0    |
| 0.2929        | 3.0   | 12000 | 0.2726          | 0.0876 | 0.0826 | 0.0876 | 0.0876    | 19.0    |
| 0.2915        | 4.0   | 16000 | 0.2709          | 0.0876 | 0.0826 | 0.0876 | 0.0876    | 19.0    |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0