File size: 13,761 Bytes
4bbcacd |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e57dc244700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e57dc244790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e57dc244820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e57dc2448b0>", "_build": "<function ActorCriticPolicy._build at 0x7e57dc244940>", "forward": "<function ActorCriticPolicy.forward at 0x7e57dc2449d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e57dc244a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e57dc244af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e57dc244b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e57dc244c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e57dc244ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e57dc244d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e57dc3d9e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717221616864199468, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3d3r2yknQ/+TrKPdOMuL5zEQu+ijTqPQAAAAAAAAAA0/oGvpxhmj/7YwO/Lj3mvp5PRb650p6+AAAAAAAAAABz/Ii9e0qquo/WrbqLm5i1v7l4uiNlxzkAAIA/AACAP+YKZb1PnlS859Wsu3BLlDy6nLU9WrpxvQAAgD8AAIA/zcCwPBQYibrDNVY5ejMxNJrTirqLtHi4AACAPwAAgD9Nowu9j4JOuq8Rxb1e0iqzB17lOkOIXzMAAIA/AACAP/bXkz7kW4s/9vASP/4UCr+IyqE+lleLPQAAAAAAAAAA5lRsvSjMSz+xdCS8K/vFvuLJg71/W6I8AAAAAAAAAAAGuT2+jcodP6W1Qj36N72+Mj++vcCKUj0AAAAAAAAAAPOHAj5V2F8/CMtgPd46mb7R2To9klb8PAAAAAAAAAAAjZ0ZPsMVfbrCpQy+7kPtOhmv1rvGe847AACAPwAAgD/AqLY91pEbPS+Sqr6PLpi9/4RUvW0Edb0AAAAAAAAAADOUtDyFL8q7VXdpvluRiTwrVh89aPBovQAAgD8AAIA/MzWGvAogRD+SqQA++k+tvrz1rbx7a3s9AAAAAAAAAABmJlW8DjuJP82x37yOAhO//WTTvZKdnD0AAAAAAAAAADO6PT1cG2O6q9VFOaVJezY3kJ84vklnuAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEqssDnvDyMAWyUTUABjAF0lEdAoPzjNnoPkXV9lChoBkdAckOZtNzr/2gHTZUBaAhHQKD95+PzWf91fZQoaAZHQFAl+oLofSxoB0u7aAhHQKD98F6Avtd1fZQoaAZHQG6wHZ9NN8FoB01XAWgIR0Cg/fsEA5q/dX2UKGgGR0BN2kr5IpYtaAdLqmgIR0Cg/soYWLxadX2UKGgGR0Bys6EOAiFCaAdNyQFoCEdAoP7sgntv43V9lChoBkdAb8l6w+t8u2gHTWQBaAhHQKD/3YaHbh51fZQoaAZHQHIyonWrfchoB00hAWgIR0ChAGOQhfShdX2UKGgGR0Bwz8w5/9YPaAdNggNoCEdAoQBxTER8MXV9lChoBkdAcAZZssQNC2gHTYABaAhHQKEA2mEXcg11fZQoaAZHQFGlRuTA31loB0vGaAhHQKEA4RkEs8R1fZQoaAZHQGV46isXBP9oB03oA2gIR0ChAd/5+H8CdX2UKGgGR0BwRvZSNwR5aAdNVAFoCEdAoQK88mrsB3V9lChoBkdAPujLKV6eG2gHS71oCEdAoQOcophF3XV9lChoBkdAbB0R6F/QSmgHTTYBaAhHQKEDmpvP1L91fZQoaAZHQHBxJwsGxD9oB00eAWgIR0ChA9h9Tgl4dX2UKGgGR0ByEjN8ma6SaAdNrAFoCEdAoQPua6STyXV9lChoBkdAbvZc32mHg2gHTSEBaAhHQKEEAf/3nIR1fZQoaAZHQGYfCYsunMtoB03oA2gIR0ChBAvgWJrMdX2UKGgGR0BwEMc1fmcOaAdNVwFoCEdAoQQgfIS13XV9lChoBkdAcN7eHzpX62gHTVwBaAhHQKEEObtJFsp1fZQoaAZHQHAXOPV/c35oB00LAWgIR0ChBNr127nQdX2UKGgGR0Bxbj7qIJqqaAdL+GgIR0ChBQWRA8jidX2UKGgGR0BzoOEwnH/+aAdNSgFoCEdAoQU8v0yxiXV9lChoBkdAccukIX0oSmgHTfABaAhHQKEFpFUADJV1fZQoaAZHQGZ04oRZlnRoB03oA2gIR0ChBbiP6sQvdX2UKGgGR0BxQ1GAkLQYaAdNeQFoCEdAoQbRTqB3A3V9lChoBkdAb8dZIQOFxmgHS/VoCEdAoQexu/Dcd3V9lChoBkdAc0yuKXOW0WgHTQ8BaAhHQKEHuPDHfdh1fZQoaAZHQHJzeBH09QpoB0v7aAhHQKEH5JFspG51fZQoaAZHQHCecPFvQ4VoB02NAWgIR0ChCF6GHpKSdX2UKGgGR0BwAvBk7OmjaAdNEAFoCEdAoQhqqlxffHV9lChoBkdAcLOivgWJrWgHTUEBaAhHQKEIo8IzFdd1fZQoaAZHQHCBB59mYjVoB00uAWgIR0ChCd8baRISdX2UKGgGR0Bwvzjo6jnFaAdNewFoCEdAoQo3v8ZUDXV9lChoBkdAcOP/RE4NqmgHTYoBaAhHQKEKVB55Z8t1fZQoaAZHQHJMjcEeQuFoB00tAWgIR0ChCl11Oj7AdX2UKGgGR0BvPAtthuwYaAdNlQFoCEdAoQqVejVQRHV9lChoBkdAbVZYqXnhbWgHTeEBaAhHQKEKyQ5FPSF1fZQoaAZHQHIQiI55qudoB00yAWgIR0ChCuWbXpW4dX2UKGgGR0BwnCEJ0GNaaAdNLwFoCEdAoQrvNVzZH3V9lChoBkdAUQVczImw7mgHS8toCEdAoQtB1xKg7HV9lChoBkdAcaEsgMc6vWgHS+doCEdAoQvFBlcyFnV9lChoBkdAS8HFvQ4S6GgHS79oCEdAoQvEx46fa3V9lChoBkdAb8fLg4wRG2gHTcIBaAhHQKEMLi6QNkR1fZQoaAZHQHCLeXRgJC1oB00PAWgIR0ChDKP0RODbdX2UKGgGR0BGT4agmJFcaAdLyGgIR0ChFg7e/Ho6dX2UKGgGR0BxZ6Fev6j4aAdNbAFoCEdAoRYOyu6mO3V9lChoBkdAcTVX3xnWa2gHTUoBaAhHQKEWYs3AEdN1fZQoaAZHQHCSaJ66aspoB00wAWgIR0ChFpaisXBQdX2UKGgGR0BuzU5OrQw9aAdNDAFoCEdAoRfYtthuwXV9lChoBkdAcbq3fyf+TGgHTQYBaAhHQKEYDSydFv11fZQoaAZHQG6CWx6fJ3hoB0v8aAhHQKEYTyEtdzJ1fZQoaAZHQG/OI4VARkFoB00mAWgIR0ChGGWWY4Q0dX2UKGgGR0BQd5iExqO+aAdLwGgIR0ChGHLUCq6wdX2UKGgGR0Bx8OV5a/yoaAdNQQFoCEdAoRi/S0BwM3V9lChoBkdAccxjXWe6I2gHTSkBaAhHQKEY4KyfL9x1fZQoaAZHQHLTWdZq20BoB01CAWgIR0ChGVYJmdy1dX2UKGgGR0BwVtElVtGeaAdNBAFoCEdAoRnQc/+sHXV9lChoBkdASf3ixVyWA2gHS+VoCEdAoRnch9srNHV9lChoBkdAbWC4Ds+mnGgHTVoBaAhHQKEarknTiKl1fZQoaAZHQHJ2EDZDiOxoB0v5aAhHQKEavRkVerx1fZQoaAZHQHBjZng5zYFoB00kAWgIR0ChGvKJVKf4dX2UKGgGR0ButlaEBbOeaAdNLQFoCEdAoRsUZ75VO3V9lChoBkdAL72YF7laKWgHS85oCEdAoRtO6I3zc3V9lChoBkdAcAj127nPmmgHTTsBaAhHQKEbfgIhQnB1fZQoaAZHQHCsGfseGPBoB0viaAhHQKEbootthux1fZQoaAZHQHJ0Fl5GBnVoB00gAWgIR0ChHByFfzBidX2UKGgGR0BzKgZAIIGAaAdNJAFoCEdAoRxBuMuOCHV9lChoBkdAcn4zEJjUeGgHTQwBaAhHQKEcljpcHGF1fZQoaAZHQHKrIetCAtpoB00gAWgIR0ChHLWTot+TdX2UKGgGR0BxHIuGsV+JaAdNMgFoCEdAoRyysKb8WXV9lChoBkdAcN8ER8MNMGgHTRIBaAhHQKEdHTl1bJR1fZQoaAZHQG3JNsenyd5oB0v8aAhHQKEdQWP91lp1fZQoaAZHQHFMrobGWD9oB0v/aAhHQKEdVDbah6B1fZQoaAZHQHKpce4kNWloB0v2aAhHQKEeHvsJIDp1fZQoaAZHQHMAKHCXQdFoB01cAWgIR0ChH3yPU8V6dX2UKGgGR0By7ktI065oaAdNHgFoCEdAoR+hwOvt+nV9lChoBkdAb9qdZq20A2gHTU4BaAhHQKEfvRrrPdF1fZQoaAZHQHIYKIeo1k1oB00/AWgIR0ChH8ltj0+UdX2UKGgGR0BuJUa/ATIvaAdNDgFoCEdAoSABtDUmUnV9lChoBkdAcYtmTC+De2gHTQMDaAhHQKEgJCj1wo91fZQoaAZHQG53o1tO2y9oB01QAWgIR0ChIEe7L+xXdX2UKGgGR0BwCTaxoqTbaAdNjAFoCEdAoSBczbeuWHV9lChoBkdAcHnT/ACW/2gHS/poCEdAoSBmhoM8YHV9lChoBkdAccO5ZbILgGgHTR4BaAhHQKEgvGmUGFB1fZQoaAZHQHGYatozvZ1oB00dAWgIR0ChINSm65G0dX2UKGgGR0BtNXaews5GaAdNJQFoCEdAoSGKUTtb93V9lChoBkdActJI+W4Vh2gHTUIBaAhHQKEhyvIOpbV1fZQoaAZHQHDFsr/bTMJoB02nAWgIR0ChIk1uR9w4dX2UKGgGR0BQ82Y4Qz1saAdLr2gIR0ChIpPx6OYIdX2UKGgGR0BzbUFiay8jaAdNfQFoCEdAoSLvI8yN43V9lChoBkdAcAkSdOIqLGgHTRoBaAhHQKEj7/2Cdz51fZQoaAZHQHESn7YTTORoB008AWgIR0ChJFD+zdDZdX2UKGgGR0BxjvYao/A1aAdNkwFoCEdAoSReAwwj+3V9lChoBkdAcURnZ00WM2gHTRYBaAhHQKEkigxrSE11fZQoaAZHQHG7rcwg1WNoB00DAWgIR0ChJLUuUUwjdX2UKGgGR0BxWD9CNS62aAdNXwFoCEdAoST8UmD15HV9lChoBkdAcx0BBiTdL2gHTRMBaAhHQKElEVEd/8V1fZQoaAZHQG/es9jgAIZoB01MAWgIR0ChJUkJ0GNadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |