File size: 1,457 Bytes
4730e34
 
 
f736cb3
 
4730e34
 
 
 
 
 
 
 
 
 
135dc1d
f736cb3
e774e74
 
 
 
 
 
4730e34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f736cb3
 
 
 
e774e74
f736cb3
 
4730e34
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-re-attention-seq-512
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-re-attention-seq-512

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0248
- Rouge1: 33.2192
- Rouge2: 24.9335
- Rougel: 31.3845
- Rougelsum: 32.5782
- Gen Len: 25.9276

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.1741        | 1.0   | 18247 | 1.0248          | 33.2192 | 24.9335 | 31.3845 | 32.5782   | 25.9276 |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3