File size: 2,409 Bytes
c9705a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- aihub_elder
model-index:
- name: whisper-small-ko-E30_Yfreq-SA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-ko-E30_Yfreq-SA
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub elder over 70 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1771
- Cer: 5.1809
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4152 | 0.13 | 100 | 0.2871 | 6.9196 |
| 0.2698 | 0.26 | 200 | 0.2207 | 6.1208 |
| 0.224 | 0.39 | 300 | 0.2093 | 5.8212 |
| 0.2407 | 0.52 | 400 | 0.2063 | 5.6802 |
| 0.234 | 0.64 | 500 | 0.1976 | 6.4556 |
| 0.2168 | 0.77 | 600 | 0.1901 | 5.3924 |
| 0.1846 | 0.9 | 700 | 0.1891 | 5.4159 |
| 0.1231 | 1.03 | 800 | 0.1823 | 5.1574 |
| 0.1159 | 1.16 | 900 | 0.1880 | 5.2749 |
| 0.1239 | 1.29 | 1000 | 0.1860 | 5.1809 |
| 0.1207 | 1.42 | 1100 | 0.1834 | 5.6273 |
| 0.101 | 1.55 | 1200 | 0.1788 | 5.5569 |
| 0.1193 | 1.68 | 1300 | 0.1771 | 5.0811 |
| 0.0949 | 1.81 | 1400 | 0.1775 | 5.1868 |
| 0.1181 | 1.93 | 1500 | 0.1771 | 5.1809 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|