File size: 2,409 Bytes
aa8176f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- aihub_elder
model-index:
- name: whisper-small-ko-E10_Yfreq-SA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-ko-E10_Yfreq-SA
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub elder over 70 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2060
- Cer: 5.8917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3564 | 0.13 | 100 | 0.2919 | 7.1898 |
| 0.2354 | 0.26 | 200 | 0.2478 | 6.7023 |
| 0.21 | 0.39 | 300 | 0.2349 | 7.3191 |
| 0.1999 | 0.52 | 400 | 0.2270 | 7.0665 |
| 0.1883 | 0.64 | 500 | 0.2227 | 6.8961 |
| 0.1844 | 0.77 | 600 | 0.2195 | 6.4027 |
| 0.1631 | 0.9 | 700 | 0.2156 | 6.1560 |
| 0.0977 | 1.03 | 800 | 0.2142 | 6.0738 |
| 0.087 | 1.16 | 900 | 0.2144 | 6.0385 |
| 0.0985 | 1.29 | 1000 | 0.2119 | 6.0033 |
| 0.0763 | 1.42 | 1100 | 0.2110 | 5.9034 |
| 0.0906 | 1.55 | 1200 | 0.2088 | 5.8741 |
| 0.0922 | 1.68 | 1300 | 0.2066 | 5.8564 |
| 0.079 | 1.81 | 1400 | 0.2060 | 5.8623 |
| 0.0771 | 1.93 | 1500 | 0.2060 | 5.8917 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|