File size: 1,567 Bytes
d1594a7 ba9b261 d1594a7 350179f d1594a7 350179f 65b1bdf d1594a7 65b1bdf d1594a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- xfun
base_model: microsoft/layoutxlm-base
model-index:
- name: layoutxlm-finetuned-xfund-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutxlm-finetuned-xfund-es
-> This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the xfun dataset.
-> Este modelo es una versión de [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) con ajuste fino sobre xfun-es dataset (español).
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2500
### Training results
Train output:
- global_step=2500
- training_loss=0.3006648193359375
- train_runtime: 3385.7522
- train_samples_per_second: 1.477
- train_steps_per_second: 0.738
- total_flos: 2688500014387200.0
- train_loss: 0.3006648193359375
- epoch: 20.49
### Framework versions
- Transformers 4.26.0
- Pytorch 1.10.0+cu111
- Datasets 2.9.0
- Tokenizers 0.13.2
|