File size: 1,955 Bytes
6bba0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ef334
 
 
 
 
6bba0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ef334
6bba0f5
 
 
 
 
b7ef334
 
 
 
 
6bba0f5
 
 
 
 
b7ef334
 
6bba0f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-finetuned-ner-geocorpus
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-finetuned-ner-geocorpus

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1068
- Precision: 0.8357
- Recall: 0.8023
- F1: 0.8187
- Accuracy: 0.9722

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 276  | 0.2197          | 0.6414    | 0.5605 | 0.5982 | 0.9495   |
| 0.3027        | 2.0   | 552  | 0.1316          | 0.7289    | 0.7718 | 0.7497 | 0.9657   |
| 0.3027        | 3.0   | 828  | 0.1068          | 0.8357    | 0.8023 | 0.8187 | 0.9722   |
| 0.1022        | 4.0   | 1104 | 0.1235          | 0.6867    | 0.8780 | 0.7707 | 0.9642   |
| 0.1022        | 5.0   | 1380 | 0.1079          | 0.7840    | 0.8854 | 0.8316 | 0.9716   |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1