|
--- |
|
license: apache-2.0 |
|
base_model: distilbert/distilbert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-finetuned-ner-harem |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-finetuned-ner-harem |
|
|
|
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1929 |
|
- Precision: 0.7319 |
|
- Recall: 0.7531 |
|
- F1: 0.7423 |
|
- Accuracy: 0.9587 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 282 | 0.2132 | 0.5566 | 0.6224 | 0.5877 | 0.9403 | |
|
| 0.28 | 2.0 | 564 | 0.1715 | 0.6793 | 0.7075 | 0.6931 | 0.9533 | |
|
| 0.28 | 3.0 | 846 | 0.1507 | 0.7101 | 0.7469 | 0.7280 | 0.9586 | |
|
| 0.0882 | 4.0 | 1128 | 0.1662 | 0.7368 | 0.7261 | 0.7315 | 0.9568 | |
|
| 0.0882 | 5.0 | 1410 | 0.1718 | 0.7387 | 0.7448 | 0.7417 | 0.9579 | |
|
| 0.0386 | 6.0 | 1692 | 0.1823 | 0.7078 | 0.7490 | 0.7278 | 0.9576 | |
|
| 0.0386 | 7.0 | 1974 | 0.1969 | 0.7206 | 0.7490 | 0.7345 | 0.9574 | |
|
| 0.0187 | 8.0 | 2256 | 0.1816 | 0.7349 | 0.7593 | 0.7469 | 0.9589 | |
|
| 0.0101 | 9.0 | 2538 | 0.1928 | 0.7363 | 0.7531 | 0.7446 | 0.9584 | |
|
| 0.0101 | 10.0 | 2820 | 0.1929 | 0.7319 | 0.7531 | 0.7423 | 0.9587 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|