--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-multilingual-cased-finetuned-ner-harem results: [] --- # distilbert-base-multilingual-cased-finetuned-ner-harem This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1929 - Precision: 0.7319 - Recall: 0.7531 - F1: 0.7423 - Accuracy: 0.9587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 282 | 0.2132 | 0.5566 | 0.6224 | 0.5877 | 0.9403 | | 0.28 | 2.0 | 564 | 0.1715 | 0.6793 | 0.7075 | 0.6931 | 0.9533 | | 0.28 | 3.0 | 846 | 0.1507 | 0.7101 | 0.7469 | 0.7280 | 0.9586 | | 0.0882 | 4.0 | 1128 | 0.1662 | 0.7368 | 0.7261 | 0.7315 | 0.9568 | | 0.0882 | 5.0 | 1410 | 0.1718 | 0.7387 | 0.7448 | 0.7417 | 0.9579 | | 0.0386 | 6.0 | 1692 | 0.1823 | 0.7078 | 0.7490 | 0.7278 | 0.9576 | | 0.0386 | 7.0 | 1974 | 0.1969 | 0.7206 | 0.7490 | 0.7345 | 0.9574 | | 0.0187 | 8.0 | 2256 | 0.1816 | 0.7349 | 0.7593 | 0.7469 | 0.9589 | | 0.0101 | 9.0 | 2538 | 0.1928 | 0.7363 | 0.7531 | 0.7446 | 0.9584 | | 0.0101 | 10.0 | 2820 | 0.1929 | 0.7319 | 0.7531 | 0.7423 | 0.9587 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1