metadata
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
datasets:
- scene_parse_150
model-index:
- name: segformer-b0-scene-parse-150
results: []
segformer-b0-scene-parse-150
This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:
- Loss: 4.1737
- Mean Iou: 0.0412
- Mean Accuracy: 0.1197
- Overall Accuracy: 0.3353
- Per Category Iou: [0.2401425714267801, 0.034835822859774955, 0.5233226285438033, 0.05315318739919738, 0.3363441411947116, 0.002136415124098476, 0.09670075065121168, 0.0, 0.0, 0.0, nan, nan, 0.498363641748608, 0.25150888487559303, 0.0, 0.0, 0.08397363262672963, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.19346311110638784, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan]
- Per Category Accuracy: [0.6895015391262084, 0.3058347775852109, 0.9947227819603158, 0.05414555351492488, 0.4346378378378378, 0.0023242754188375504, 0.12029455130074054, 0.0, 0.0, 0.0, nan, nan, 0.8755609902046232, 0.32841060897331464, 0.0, nan, 0.11352886582952221, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.9129513540621865, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
4.0917 | 1.0 | 20 | 4.1737 | 0.0412 | 0.1197 | 0.3353 | [0.2401425714267801, 0.034835822859774955, 0.5233226285438033, 0.05315318739919738, 0.3363441411947116, 0.002136415124098476, 0.09670075065121168, 0.0, 0.0, 0.0, nan, nan, 0.498363641748608, 0.25150888487559303, 0.0, 0.0, 0.08397363262672963, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.19346311110638784, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan] | [0.6895015391262084, 0.3058347775852109, 0.9947227819603158, 0.05414555351492488, 0.4346378378378378, 0.0023242754188375504, 0.12029455130074054, 0.0, 0.0, 0.0, nan, nan, 0.8755609902046232, 0.32841060897331464, 0.0, nan, 0.11352886582952221, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.9129513540621865, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan] |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1