End of training
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- scene_parse_150
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b0-scene-parse-150
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b0-scene-parse-150
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 4.1737
|
21 |
+
- Mean Iou: 0.0412
|
22 |
+
- Mean Accuracy: 0.1197
|
23 |
+
- Overall Accuracy: 0.3353
|
24 |
+
- Per Category Iou: [0.2401425714267801, 0.034835822859774955, 0.5233226285438033, 0.05315318739919738, 0.3363441411947116, 0.002136415124098476, 0.09670075065121168, 0.0, 0.0, 0.0, nan, nan, 0.498363641748608, 0.25150888487559303, 0.0, 0.0, 0.08397363262672963, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.19346311110638784, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan]
|
25 |
+
- Per Category Accuracy: [0.6895015391262084, 0.3058347775852109, 0.9947227819603158, 0.05414555351492488, 0.4346378378378378, 0.0023242754188375504, 0.12029455130074054, 0.0, 0.0, 0.0, nan, nan, 0.8755609902046232, 0.32841060897331464, 0.0, nan, 0.11352886582952221, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.9129513540621865, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan]
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 6e-05
|
45 |
+
- train_batch_size: 2
|
46 |
+
- eval_batch_size: 2
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 1
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
56 |
+
| 4.0917 | 1.0 | 20 | 4.1737 | 0.0412 | 0.1197 | 0.3353 | [0.2401425714267801, 0.034835822859774955, 0.5233226285438033, 0.05315318739919738, 0.3363441411947116, 0.002136415124098476, 0.09670075065121168, 0.0, 0.0, 0.0, nan, nan, 0.498363641748608, 0.25150888487559303, 0.0, 0.0, 0.08397363262672963, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.19346311110638784, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan] | [0.6895015391262084, 0.3058347775852109, 0.9947227819603158, 0.05414555351492488, 0.4346378378378378, 0.0023242754188375504, 0.12029455130074054, 0.0, 0.0, 0.0, nan, nan, 0.8755609902046232, 0.32841060897331464, 0.0, nan, 0.11352886582952221, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.9129513540621865, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan] |
|
57 |
+
|
58 |
+
|
59 |
+
### Framework versions
|
60 |
+
|
61 |
+
- Transformers 4.35.0
|
62 |
+
- Pytorch 2.1.0+cu118
|
63 |
+
- Datasets 2.14.6
|
64 |
+
- Tokenizers 0.14.1
|