Greynar commited on
Commit
3ba6271
1 Parent(s): 0d07620

End of training

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - scene_parse_150
8
+ model-index:
9
+ - name: segformer-b0-scene-parse-150
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b0-scene-parse-150
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 4.1737
21
+ - Mean Iou: 0.0412
22
+ - Mean Accuracy: 0.1197
23
+ - Overall Accuracy: 0.3353
24
+ - Per Category Iou: [0.2401425714267801, 0.034835822859774955, 0.5233226285438033, 0.05315318739919738, 0.3363441411947116, 0.002136415124098476, 0.09670075065121168, 0.0, 0.0, 0.0, nan, nan, 0.498363641748608, 0.25150888487559303, 0.0, 0.0, 0.08397363262672963, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.19346311110638784, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan]
25
+ - Per Category Accuracy: [0.6895015391262084, 0.3058347775852109, 0.9947227819603158, 0.05414555351492488, 0.4346378378378378, 0.0023242754188375504, 0.12029455130074054, 0.0, 0.0, 0.0, nan, nan, 0.8755609902046232, 0.32841060897331464, 0.0, nan, 0.11352886582952221, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.9129513540621865, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan]
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 2
46
+ - eval_batch_size: 2
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
56
+ | 4.0917 | 1.0 | 20 | 4.1737 | 0.0412 | 0.1197 | 0.3353 | [0.2401425714267801, 0.034835822859774955, 0.5233226285438033, 0.05315318739919738, 0.3363441411947116, 0.002136415124098476, 0.09670075065121168, 0.0, 0.0, 0.0, nan, nan, 0.498363641748608, 0.25150888487559303, 0.0, 0.0, 0.08397363262672963, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.19346311110638784, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan] | [0.6895015391262084, 0.3058347775852109, 0.9947227819603158, 0.05414555351492488, 0.4346378378378378, 0.0023242754188375504, 0.12029455130074054, 0.0, 0.0, 0.0, nan, nan, 0.8755609902046232, 0.32841060897331464, 0.0, nan, 0.11352886582952221, 0.0, 0.07671808913771606, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.9129513540621865, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan] |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.35.0
62
+ - Pytorch 2.1.0+cu118
63
+ - Datasets 2.14.6
64
+ - Tokenizers 0.14.1