Transformers
PyTorch
Graphcore
bert
Generated from Trainer
Inference Endpoints
File size: 5,931 Bytes
387585b
4fc3d82
387585b
 
 
 
 
 
 
 
 
 
 
 
46a535e
 
 
 
387585b
 
 
a9c367b
8d00106
a9c367b
 
 
8d00106
387585b
46a535e
 
 
387585b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Graphcore/wikipedia-bert-128
- Graphcore/wikipedia-bert-512
model-index:
- name: Graphcore/bert-large-uncased
  results: []
---

# Graphcore/bert-large-uncased

Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore).

Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project.


## Model description

BERT (Bidirectional Encoder Representations from Transformers) is a transformers model which is designed to pretrain bidirectional representations from unlabelled texts. It enables easy and fast fine-tuning for different downstream tasks such as Sequence Classification, Named Entity Recognition, Question Answering, Multiple Choice and MaskedLM. 

It was trained with two objectives in pretraining : Masked language modelling (MLM) and Next sentence prediction(NSP). First, MLM is different from traditional LM which sees the words one after another while BERT allows the model to learn a bidirectional representation.  In addition to MLM, NSP is used for jointly pertaining text-pair representations.

It reduces the need of many engineering efforts for building task specific architectures through pre-trained representation. And achieves state-of-the-art performance on a large suite of sentence-level and token-level tasks.


## Intended uses & limitations

This model is a pre-trained BERT-Large trained in two phases on the [Graphcore/wikipedia-bert-128](https://huggingface.co/datasets/Graphcore/wikipedia-bert-128) and [Graphcore/wikipedia-bert-512](https://huggingface.co/datasets/Graphcore/wikipedia-bert-512) datasets.

## Training and evaluation data

Trained on wikipedia datasets:
- [Graphcore/wikipedia-bert-128](https://huggingface.co/datasets/Graphcore/wikipedia-bert-128)
- [Graphcore/wikipedia-bert-512](https://huggingface.co/datasets/Graphcore/wikipedia-bert-512)

## Training procedure

Trained MLM and NSP pre-training scheme from [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).
Trained on 64 Graphcore Mk2 IPUs using [`optimum-graphcore`](https://github.com/huggingface/optimum-graphcore)

Command lines:

Phase 1:
```
python examples/language-modeling/run_pretraining.py \
  --config_name bert-large-uncased \
  --tokenizer_name bert-large-uncased \
  --ipu_config_name Graphcore/bert-large-ipu \
  --dataset_name Graphcore/wikipedia-bert-128 \
  --do_train \
  --logging_steps 5 \
  --max_seq_length 128 \
  --max_steps 10550 \
  --is_already_preprocessed \
  --dataloader_num_workers 64 \
  --dataloader_mode async_rebatched \
  --lamb \
  --lamb_no_bias_correction \
  --per_device_train_batch_size 8 \
  --gradient_accumulation_steps 512 \
  --pod_type pod64 \
  --learning_rate 0.006 \
  --lr_scheduler_type linear \
  --loss_scaling 32768 \
  --weight_decay 0.01 \
  --warmup_ratio 0.28 \
  --config_overrides "layer_norm_eps=0.001" \
  --ipu_config_overrides "matmul_proportion=[0.14 0.19 0.19 0.19]" \
  --output_dir output-pretrain-bert-large-phase1
```

Phase 2:
```
python examples/language-modeling/run_pretraining.py \
  --config_name bert-large-uncased \
  --tokenizer_name bert-large-uncased \
  --model_name_or_path ./output-pretrain-bert-large-phase1 \
  --ipu_config_name Graphcore/bert-large-ipu \
  --dataset_name Graphcore/wikipedia-bert-512 \
  --do_train \
  --logging_steps 5 \
  --max_seq_length 512 \
  --max_steps 2038 \
  --is_already_preprocessed \
  --dataloader_num_workers 96 \
  --dataloader_mode async_rebatched \
  --lamb \
  --lamb_no_bias_correction \
  --per_device_train_batch_size 2 \
  --gradient_accumulation_steps 512 \
  --pod_type pod64 \
  --learning_rate 0.002828 \
  --lr_scheduler_type linear \
  --loss_scaling 16384 \
  --weight_decay 0.01 \
  --warmup_ratio 0.128 \
  --config_overrides "layer_norm_eps=0.001" \
  --ipu_config_overrides "matmul_proportion=[0.14 0.19 0.19 0.19]" \
  --output_dir output-pretrain-bert-large-phase2
```

### Training hyperparameters

The following hyperparameters were used during phase 1 training:
- learning_rate: 0.006
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 512
- total_train_batch_size: 65536
- total_eval_batch_size: 512
- optimizer: LAMB
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.28
- training_steps: 10550
- training precision: Mixed Precision

The following hyperparameters were used during phase 2 training:
- learning_rate: 0.002828
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 512
- total_train_batch_size: 16384
- total_eval_batch_size: 512
- optimizer: LAMB
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.128
- training_steps: 2038
- training precision: Mixed Precision

### Training results

```
train/epoch: 2.04
train/global_step: 2038
train/loss: 1.2002
train/train_runtime: 12022.3897
train/train_steps_per_second: 0.17
train/train_samples_per_second: 2777.367
```

### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cpu
- Datasets 2.0.0
- Tokenizers 0.11.6