File size: 26,991 Bytes
38939c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split,cross_val_score,GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, roc_curve, auc,classification_report
from sklearn.impute import SimpleImputer
import openpyxl
import optuna
import joblib
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt

st.set_page_config(page_title="ML Model Deployment", layout="wide")

def load_data(file):
    try:
        if file.name.endswith('.csv'):
            data = pd.read_csv(file)
        elif file.name.endswith(('.xls', '.xlsx')):
            data = pd.read_excel(file)
        return data
    except Exception as e:
        st.error(f"Error loading file: {e}")
        return None

def auto_process_data(data):
    processed_data = data.copy()
    label_encoders = {}
    
    if processed_data.isnull().sum().sum() > 0:
        st.info("Automatically handling missing values...")
        
        num_cols = processed_data.select_dtypes(include=['int64', 'float64']).columns
        if len(num_cols) > 0:
            num_imputer = SimpleImputer(strategy='median')
            processed_data[num_cols] = num_imputer.fit_transform(processed_data[num_cols])
        
        cat_cols = processed_data.select_dtypes(include=['object']).columns
        if len(cat_cols) > 0:
            for col in cat_cols:
                if processed_data[col].isnull().any():
                    most_frequent = processed_data[col].mode()[0]
                    processed_data[col].fillna(most_frequent, inplace=True)
    
    for column in processed_data.select_dtypes(include=['object']):
        label_encoders[column] = LabelEncoder()
        processed_data[column] = label_encoders[column].fit_transform(processed_data[column].astype(str))
    
    return processed_data, label_encoders

def get_model_configs():
    models = {
        'Logistic Regression': {
            'pipeline': Pipeline([
                ('scaler', StandardScaler()),
                ('classifier', LogisticRegression())
            ]),
            'params': {
                'classifier__penalty':['l1','l2'],
                'classifier__C':[0.01,0.1,1],
                'classifier__max_iter': [100, 200],
                'classifier__solver':['liblinear','saga']
            }
        },
        'Support Vector Machine': {
            'pipeline': Pipeline([
                ('scaler', StandardScaler()),
                ('classifier', SVC(probability=True))
            ]),
            'params': {
                'classifier__C': [0.001, 0.1, 1],
                'classifier__kernel': ['linear', 'rbf', 'sigmoid'],
                'classifier__gamma': ['scale', 'auto', 0.01, 0.1, 1],
                'classifier__max_iter':[100,200]
            }
        },
        'Random Forest': {
            'pipeline': Pipeline([
                ('scaler', StandardScaler()),
                ('classifier', RandomForestClassifier())
            ]),
            'params': {
                'classifier__n_estimators':[100,200],
                'classifier__max_depth': [None, 10, 20],
                'classifier__min_samples_split': [2,5,10],
                'classifier__min_samples_leaf':[1,2,4],
            }
        },
        'XgBoost':{
            'pipeline':Pipeline([
            ('scaled',StandardScaler()),
            ('classifier',XGBClassifier(use_label_encoder=False,eval_metric='logloss'))
            ]),
            'params':{
                'classifier__n_estimators': [100, 200],
                'classifier__learning_rate': [0.01, 0.05, 0.1],
                'classifier__max_depth': [3, 5, 7],
                'classifier__min_child_weight': [1, 3, 5],
                'classifier__subsample': [0.8, 1.0]               
            }
        }
    }
    return models

def train_model(X_train, y_train, selected_model, progress_bar=None):
    models = get_model_configs()
    model_config = models[selected_model]
    
    with st.spinner(f"Training {selected_model}..."):
        grid_search = GridSearchCV(
            estimator=model_config['pipeline'],
            param_grid=model_config['params'],
            cv=5,
            n_jobs=-1,
            verbose=0,
            scoring="accuracy"
        )
        grid_search.fit(X_train, y_train)
        
        if progress_bar:
            progress_bar.progress(1.0)
        
        return grid_search.best_estimator_, grid_search.best_score_
def objective(trial, X_train, y_train, model_name):
    models = get_model_configs()
    model_config = models[model_name]
    dataset_size = len(X_train)
    cv_folds = 5 if dataset_size > 1000 else (3 if dataset_size > 500 else min(2, dataset_size))
    params = {}

    if model_name == 'Logistic Regression':
        params = {
            'classifier__penalty': trial.suggest_categorical('classifier__penalty', ['l1', 'l2']),
            'classifier__C': trial.suggest_float('classifier__C', 0.01, 1.0, log=True),
            'classifier__solver': trial.suggest_categorical('classifier__solver', ['liblinear', 'saga']),
            'classifier__max_iter': trial.suggest_int('classifier__max_iter', 100, 200)
        }
    
    elif model_name == 'Support Vector Machine':
        params = {
            'classifier__C': trial.suggest_float('classifier__C', 0.001, 1.0, log=True),
            'classifier__kernel': trial.suggest_categorical('classifier__kernel', ['linear', 'rbf', 'sigmoid']),
            'classifier__gamma': trial.suggest_categorical('classifier__gamma', ['scale', 'auto', 0.01, 0.1, 1]),
            'classifier__max_iter': trial.suggest_int('classifier__max_iter', 100, 200)
        }
    
    elif model_name == 'Random Forest':
         params = {
            'classifier__n_estimators': trial.suggest_int('classifier__n_estimators', 100, 200),
            'classifier__max_depth': trial.suggest_categorical('classifier__max_depth', [None, 10, 20]),
            'classifier__min_samples_split': trial.suggest_int('classifier__min_samples_split', 2, 10),
            'classifier__min_samples_leaf': trial.suggest_int('classifier__min_samples_leaf', 1, 4)
        }
    elif model_name == 'XGBoost':
         params = {
            'classifier__n_estimators': trial.suggest_int('classifier__n_estimators', 100, 300),
            'classifier__learning_rate': trial.suggest_float('classifier__learning_rate', 0.01, 0.2, log=True),
            'classifier__max_depth': trial.suggest_int('classifier__max_depth', 3, 10),
            'classifier__min_child_weight': trial.suggest_int('classifier__min_child_weight', 1, 6)
        }
    
    pipeline = model_config['pipeline'].set_params(**params)
    pipeline.fit(X_train, y_train)
    
    score = cross_val_score(pipeline, X_train, y_train, cv=cv_folds, scoring="accuracy").mean()
    return score
def auto_train(X_train, y_train, X_test, y_test):
    models = get_model_configs()
    results = {}
    best_score = 0
    best_model = None
    best_model_name = None

    st.write("πŸ”„ Training models with Optuna hyperparameter tuning...")

    progress_cols = st.columns(len(models))
    progress_bars = {model_name: progress_cols[i].progress(0.0) for i, model_name in enumerate(models)}

    for model_name in models.keys():
        st.write(f"πŸ›  Training {model_name}...")

        # Run Optuna optimization
        study = optuna.create_study(direction='maximize')
        study.optimize(lambda trial: objective(trial, X_train, y_train, model_name), n_trials=20)

        # Retrieve best parameters and train model
        best_params = study.best_params
        pipeline = models[model_name]['pipeline'].set_params(**best_params)
        pipeline.fit(X_train, y_train)

        # Evaluate model
        y_pred = pipeline.predict(X_test)
        test_accuracy = accuracy_score(y_test, y_pred)

        results[model_name] = {
            'model': pipeline,
            'cv_score': study.best_value,
            'test_accuracy': test_accuracy
        }

        progress_bars[model_name].progress(1.0)

        # Track best model
        if test_accuracy > best_score:
            best_score = test_accuracy
            best_model = pipeline
            best_model_name = model_name

    # Display results
    results_df = pd.DataFrame({
        'Model': list(results.keys()),
        'Cross-Validation Score': [results[model]['cv_score'] for model in results],
        'Test Accuracy': [results[model]['test_accuracy'] for model in results]
    }).sort_values('Test Accuracy', ascending=False)

    st.subheader("πŸ“Š Model Performance Comparison")
    st.dataframe(results_df)

    st.success(f"πŸ† Best model: **{best_model_name}** with accuracy: **{best_score:.2%}**")

    return best_model, best_model_name

def get_classification_report(y_true, y_pred):
    report_dict = classification_report(y_true, y_pred, output_dict=True)
    df = pd.DataFrame(report_dict).transpose()
    return df
def evaluate_models(X_train, X_test, y_train, y_test):
    models =get_model_configs()
    
    results = {}

    plt.figure(figsize=(10, 6))
    
    for name, model in models.items():
        model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        y_prob = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else None
        
        accuracy = accuracy_score(y_test, y_pred)
        precision = precision_score(y_test, y_pred, average='binary')
        recall = recall_score(y_test, y_pred, average='binary')
        f1 = f1_score(y_test, y_pred, average='binary')
        roc_auc = roc_auc_score(y_test, y_prob) if y_prob is not None else None
        
        results[name] = {
            "Accuracy": accuracy,
            "Precision": precision,
            "Recall": recall,
            "F1-score": f1,
            "ROC-AUC": roc_auc
        }

        if y_prob is not None:
            fpr, tpr, _ = roc_curve(y_test, y_prob)
            plt.plot(fpr, tpr, label=f"{name} (AUC = {roc_auc:.2f})")

    plt.plot([0, 1], [0, 1], linestyle="--", color="gray")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("ROC Curves")
    plt.legend()
    plt.show()
    
    fig, axes = plt.subplots(2, 2, figsize=(12, 10))
    for ax, (name, model) in zip(axes.ravel(), models.items()):
        y_pred = model.predict(X_test)
        cm = confusion_matrix(y_test, y_pred)
        sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", ax=ax)
        ax.set_title(f"{name} - Confusion Matrix")
        ax.set_xlabel("Predicted Label")
        ax.set_ylabel("True Label")
    
    plt.tight_layout()
    plt.show()

    results_df = pd.DataFrame(results).T
    results_df.plot(kind="bar", figsize=(10, 6))
    plt.title("Model Comparison")
    plt.ylabel("Score")
    plt.xticks(rotation=45)
    plt.legend(title="Metrics")
    plt.show()
    
    return results_df

def main():
    st.title("πŸ€–  Machine Learning Model Deployment")
    
    st.sidebar.header("Navigation")
    page = st.sidebar.radio("Go to", ["Home","Data Upload & Analysis", "Model Training","Visualisation", "Prediction"])
    
    if 'data' not in st.session_state:
        st.session_state.data = None
    if 'processed_data' not in st.session_state:
        st.session_state.processed_data = None
    if 'label_encoders' not in st.session_state:
        st.session_state.label_encoders = None
    if 'model' not in st.session_state:
        st.session_state.model = None
    if 'features' not in st.session_state:
        st.session_state.features = None
    if 'target' not in st.session_state:
        st.session_state.target = None
    if 'model_name' not in st.session_state:
        st.session_state.model_name = None

    if page=="Home":
        st.title("πŸš€ AutoML: Effortless Machine Learning")
        st.markdown(
        """
        Welcome to **AutoML**, a powerful yet easy-to-use tool that automates the process of building and evaluating 
        machine learning models. Whether you're a beginner exploring data or an expert looking for quick model deployment, 
        AutoML simplifies the entire workflow.
        """
        )

        st.header("πŸ”Ή Features")
        st.markdown(
        """
        - **Automated Model Selection** – Let AutoML pick the best algorithm for your data.
        - **Hyperparameter Tuning** – Optimize model performance without manual tweaking.
        - **Data Preprocessing** – Handle missing values, scaling, encoding, and feature engineering.
        - **Performance Evaluation** – Compare models with key metrics and visualizations.
        - **Model Export** – Save trained models for deployment.
        """
        )

        st.header("πŸš€ Get Started")
        st.markdown(
        """
        1. **Upload your dataset** – Provide a CSV or Excel file with your data.
        2. **Select your target variable** – Choose the column to predict.
        3. **Let AutoML do the magic!** – Sit back and watch the automation work.
        """
        )

        st.header("πŸ“Š Visual Insights")
        st.markdown(
        """
        Explore interactive charts and performance metrics to make informed decisions. 
        Use visualizations to compare model accuracy, precision, recall, and other key statistics.
        """
        )

        st.success("Start automating your ML workflows now! 🎯")
        st.write('''Developed By Gourav Singh,Ankit Yadav,Pushpansh''')
  
    if page == "Data Upload & Analysis":
        st.header("πŸ“Š Data Upload & Analysis")
        
        uploaded_file = st.file_uploader("Upload your dataset (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
        
        if uploaded_file is not None:
            st.session_state.data = load_data(uploaded_file)
            
            if st.session_state.data is not None:
                st.session_state.processed_data, st.session_state.label_encoders = auto_process_data(st.session_state.data)
                
                st.success("Data loaded and automatically processed!")
                
                st.subheader("Dataset Overview")
                col1, col2, col3 = st.columns(3)
                with col1:
                    st.info(f"Number of rows: {st.session_state.data.shape[0]}")
                with col2:
                    st.info(f"Number of columns: {st.session_state.data.shape[1]}")
                with col3:
                    missing_values = st.session_state.data.isnull().sum().sum()
                    st.info(f"Missing values: {missing_values} (Automatically handled)")
                
                st.subheader("Original Data Preview")
                st.dataframe(st.session_state.data.head())
                
                st.subheader("Processed Data Preview")
                st.dataframe(st.session_state.processed_data.head())
                
                st.subheader("Statistical Description")
                st.dataframe(st.session_state.processed_data.describe())
                
                st.subheader("Correlation Heatmap")
                fig, ax = plt.subplots(figsize=(10, 6))
                sns.heatmap(st.session_state.processed_data.corr(), annot=True, cmap='coolwarm', ax=ax)
                st.pyplot(fig)
    
    elif page == "Model Training":
        st.header("🎯 Auto Model Training")
        
        if st.session_state.processed_data is None:
            st.warning("Please upload and process your data first!")
            return
            
        st.subheader("Select Features and Target")
        columns = st.session_state.processed_data.columns.tolist()
        
        st.session_state.features = st.multiselect("Select features", columns, default=columns[:-1])
        st.session_state.target = st.selectbox("Select target variable", columns)
        
        if st.button("Auto Train Models"):
            if len(st.session_state.features) > 0 and st.session_state.target:
                X = st.session_state.processed_data[st.session_state.features]
                y = st.session_state.processed_data[st.session_state.target]
                
                X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
                
                st.session_state.model, st.session_state.model_name = auto_train(X_train, y_train, X_test, y_test)
                
                y_pred = st.session_state.model.predict(X_test)
                
                st.subheader("Best Model Performance")
                
                accuracy = accuracy_score(y_test, y_pred)
                st.metric("Accuracy", f"{accuracy:.2%}")
                
                st.text("Classification Report:")

                df_report = get_classification_report(y_test, y_pred)
                st.dataframe(df_report)
                
                if st.session_state.model_name == "Random Forest":
                    st.subheader("Feature Importance")
                    
                    importance_df = pd.DataFrame({
                        'Feature': st.session_state.features,
                        'Importance': st.session_state.model.named_steps['classifier'].feature_importances_
                    }).sort_values('Importance', ascending=False)
                    
                    fig = px.bar(importance_df, x='Feature', y='Importance',
                                title='Feature Importance Plot')
                    st.plotly_chart(fig)
                
                model_data = {
                    'model': st.session_state.model,
                    'model_name': st.session_state.model_name,
                    'label_encoders': st.session_state.label_encoders,
                    'features': st.session_state.features,
                    'target': st.session_state.target
                }
                joblib.dump(model_data, 'model_data.joblib')
                st.download_button(
                    label="Download trained model",
                    data=open('model_data.joblib', 'rb'),
                    file_name='model_data.joblib',
                    mime='application/octet-stream'
                )
    elif page=="Visualisation":
        st.header("Model Visualisation")
        if st.session_state.model is None:
            st.warning("Please train a model first!")
            return
    
        if st.session_state.processed_data is not None and st.session_state.features and st.session_state.target:
            X = st.session_state.processed_data[st.session_state.features]
            y = st.session_state.processed_data[st.session_state.target]
        
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        
        # Create visualization options
            viz_option = st.selectbox(
                "Select visualization type", 
                ["Model Comparison", "ROC Curves", "Confusion Matrix"]
            )
        
            if viz_option == "Model Comparison":
                st.subheader("Model Performance Metrics")
            
            # Train all models to compare
                models = get_model_configs()
                results = {}
            
                progress_bar = st.progress(0)
                progress_text = st.empty()
            
                for i, (name, model_config) in enumerate(models.items()):
                    progress_text.text(f"Training {name}...")
                    pipeline = model_config['pipeline']
                    pipeline.fit(X_train, y_train)
                
                    y_pred = pipeline.predict(X_test)
                    y_prob = pipeline.predict_proba(X_test)[:, 1] if hasattr(pipeline, "predict_proba") else None
                
                    accuracy = accuracy_score(y_test, y_pred)
                    precision = precision_score(y_test, y_pred, average='binary')
                    recall = recall_score(y_test, y_pred, average='binary')
                    f1 = f1_score(y_test, y_pred, average='binary')
                    roc_auc = roc_auc_score(y_test, y_prob) if y_prob is not None else None
                
                    results[name] = {
                        "Accuracy": accuracy,
                        "Precision": precision,
                        "Recall": recall,
                        "F1-score": f1,
                        "ROC-AUC": roc_auc
                    }
                
                    progress_bar.progress((i + 1) / len(models))
            
                progress_text.empty()
            
                results_df = pd.DataFrame(results).T
                st.dataframe(results_df)

                fig = px.bar(
                    results_df.reset_index().melt(id_vars='index', var_name='Metric', value_name='Score'), 
                    x='index', y='Score', color='Metric', 
                    barmode='group',
                    title='Model Comparison',
                    labels={'index': 'Model'}
                )
                st.plotly_chart(fig)
            
            elif viz_option == "ROC Curves":
                st.subheader("ROC Curves")
            
                models = get_model_configs()
            
                fig = plt.figure(figsize=(10, 6))
            
                for name, model_config in models.items():
                    pipeline = model_config['pipeline']
                    pipeline.fit(X_train, y_train)
                
                    if hasattr(pipeline, "predict_proba"):
                        y_prob = pipeline.predict_proba(X_test)[:, 1]
                        fpr, tpr, _ = roc_curve(y_test, y_prob)
                        roc_auc = auc(fpr, tpr)
                        plt.plot(fpr, tpr, lw=2, label=f'{name} (AUC = {roc_auc:.2f})')
            
                plt.plot([0, 1], [0, 1], color='gray', lw=2, linestyle='--')
                plt.xlim([0.0, 1.0])
                plt.ylim([0.0, 1.05])
                plt.xlabel('False Positive Rate')
                plt.ylabel('True Positive Rate')
                plt.title('Receiver Operating Characteristic (ROC) Curves')
                plt.legend(loc="lower right")
            
                st.pyplot(fig)
            
            elif viz_option == "Confusion Matrix":
                st.subheader("Confusion Matrices")
            
                models = get_model_configs()
            
                if len(models) > 4:
                    st.warning("Showing confusion matrices for the first 4 models")
                    model_items = list(models.items())[:4]
                else:
                    model_items = list(models.items())
            
                num_models = len(model_items)
                cols = 2
                rows = (num_models + 1) // 2
            
                fig, axes = plt.subplots(rows, cols, figsize=(12, 10))
                axes = axes.flatten() if num_models > 1 else [axes]
            
                for i, (name, model_config) in enumerate(model_items):
                    pipeline = model_config['pipeline']
                    pipeline.fit(X_train, y_train)
                
                    y_pred = pipeline.predict(X_test)
                    cm = confusion_matrix(y_test, y_pred)
                
                    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", ax=axes[i])
                    axes[i].set_title(f"{name} - Confusion Matrix")
                    axes[i].set_xlabel("Predicted")
                    axes[i].set_ylabel("Actual")
            
                for j in range(num_models, len(axes)):
                    fig.delaxes(axes[j])
                
                plt.tight_layout()
                st.pyplot(fig)
            
            st.subheader("Current Model Performance")
            best_model_pred = st.session_state.model.predict(X_test)
        
            st.metric("Accuracy", f"{accuracy_score(y_test, best_model_pred):.2%}")
        
            col1, col2 = st.columns(2)
            with col1:
                st.metric("Precision", f"{precision_score(y_test, best_model_pred):.2%}")
                st.metric("F1 Score", f"{f1_score(y_test, best_model_pred):.2%}")
            with col2:
                st.metric("Recall", f"{recall_score(y_test, best_model_pred):.2%}")
                if hasattr(st.session_state.model, "predict_proba"):
                    best_proba = st.session_state.model.predict_proba(X_test)[:, 1]
                    st.metric("AUC", f"{roc_auc_score(y_test, best_proba):.2%}")
        
                else:
                    st.warning("Please load and preprocess your dataset before running evaluation.")


    elif page == "Prediction":
        st.header("🎲 Make Predictions")
        
        if st.session_state.model is None:
            st.warning("Please train a model first!")
            return
            
        st.subheader("Enter Feature Values")
        st.info(f"Using best model: {st.session_state.model_name}")
        
        input_data = {}
        for feature in st.session_state.features:
            if feature in st.session_state.label_encoders:
                options = st.session_state.label_encoders[feature].classes_
                value = st.selectbox(f"Select {feature}", options)
                input_data[feature] = st.session_state.label_encoders[feature].transform([value])[0]
            else:
                input_data[feature] = st.number_input(f"Enter value for {feature}", value=0.0)
        if st.button("Predict"):
            input_df = pd.DataFrame([input_data])
            
            prediction = st.session_state.model.predict(input_df)
            
            if st.session_state.target in st.session_state.label_encoders:
                original_prediction = st.session_state.label_encoders[st.session_state.target].inverse_transform(prediction)
                st.success(f"Predicted {st.session_state.target}: {original_prediction[0]}")
            else:
                st.success(f"Predicted {st.session_state.target}: {prediction[0]}")
            
            proba = st.session_state.model.predict_proba(input_df)
            st.subheader("Prediction Probability")
            
            if st.session_state.target in st.session_state.label_encoders:
                classes = st.session_state.label_encoders[st.session_state.target].classes_
            else:
                classes = st.session_state.model.classes_
                
            proba_df = pd.DataFrame(
                proba,
                columns=classes
            )
            st.dataframe(proba_df)

if __name__ == "__main__":
    main()