File size: 9,586 Bytes
1a597d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from collections.abc import Sequence
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
from monai.networks.blocks.transformerblock import TransformerBlock
try:
    import torch.distributed.nn
    from torch import distributed as dist
    has_distributed = True
except ImportError:
    has_distributed = False
from .configuration_m3d_clip import M3DCLIPConfig
from transformers import BertModel, BertConfig


def gather_features(
        image_features,
        text_features,
        local_loss=False,
        gather_with_grad=True,
        rank=0,
        world_size=1,
):
    assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'

    # We gather tensors from all gpus
    if gather_with_grad:
        all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
        all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
    else:
        gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
        gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
        dist.all_gather(gathered_image_features, image_features)
        dist.all_gather(gathered_text_features, text_features)
        if not local_loss:
            # ensure grads for local rank when all_* features don't have a gradient
            gathered_image_features[rank] = image_features
            gathered_text_features[rank] = text_features
        all_image_features = torch.cat(gathered_image_features, dim=0)
        all_text_features = torch.cat(gathered_text_features, dim=0)

    return all_image_features, all_text_features

class ViT(nn.Module):
    """
    Vision Transformer (ViT), based on: "Dosovitskiy et al.,
    An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"

    ViT supports Torchscript but only works for Pytorch after 1.8.
    """

    def __init__(
        self,
        in_channels: int,
        img_size: Sequence[int] | int,
        patch_size: Sequence[int] | int,
        hidden_size: int = 768,
        mlp_dim: int = 3072,
        num_layers: int = 12,
        num_heads: int = 12,
        pos_embed: str = "conv",
        classification: bool = False,
        num_classes: int = 2,
        dropout_rate: float = 0.0,
        spatial_dims: int = 3,
        post_activation="Tanh",
        qkv_bias: bool = False,
        save_attn: bool = False,
    ) -> None:
        """
        Args:
            in_channels (int): dimension of input channels.
            img_size (Union[Sequence[int], int]): dimension of input image.
            patch_size (Union[Sequence[int], int]): dimension of patch size.
            hidden_size (int, optional): dimension of hidden layer. Defaults to 768.
            mlp_dim (int, optional): dimension of feedforward layer. Defaults to 3072.
            num_layers (int, optional): number of transformer blocks. Defaults to 12.
            num_heads (int, optional): number of attention heads. Defaults to 12.
            pos_embed (str, optional): position embedding layer type. Defaults to "conv".
            classification (bool, optional): bool argument to determine if classification is used. Defaults to False.
            num_classes (int, optional): number of classes if classification is used. Defaults to 2.
            dropout_rate (float, optional): faction of the input units to drop. Defaults to 0.0.
            spatial_dims (int, optional): number of spatial dimensions. Defaults to 3.
            post_activation (str, optional): add a final acivation function to the classification head
                when `classification` is True. Default to "Tanh" for `nn.Tanh()`.
                Set to other values to remove this function.
            qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
            save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.

        Examples::

            # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
            >>> net = ViT(in_channels=1, img_size=(96,96,96), pos_embed='conv')

            # for 3-channel with image size of (128,128,128), 24 layers and classification backbone
            >>> net = ViT(in_channels=3, img_size=(128,128,128), pos_embed='conv', classification=True)

            # for 3-channel with image size of (224,224), 12 layers and classification backbone
            >>> net = ViT(in_channels=3, img_size=(224,224), pos_embed='conv', classification=True, spatial_dims=2)

        """

        super().__init__()

        if not (0 <= dropout_rate <= 1):
            raise ValueError("dropout_rate should be between 0 and 1.")

        if hidden_size % num_heads != 0:
            raise ValueError("hidden_size should be divisible by num_heads.")
        self.hidden_size = hidden_size
        self.classification = classification
        self.patch_embedding = PatchEmbeddingBlock(
            in_channels=in_channels,
            img_size=img_size,
            patch_size=patch_size,
            hidden_size=hidden_size,
            num_heads=num_heads,
            pos_embed=pos_embed,
            dropout_rate=dropout_rate,
            spatial_dims=spatial_dims,
        )
        self.blocks = nn.ModuleList(
            [
                TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate, qkv_bias, save_attn)
                for i in range(num_layers)
            ]
        )
        self.norm = nn.LayerNorm(hidden_size)
        if self.classification:
            self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
            # if post_activation == "Tanh":
            #     self.classification_head = nn.Sequential(nn.Linear(hidden_size, num_classes), nn.Tanh())
            # else:
            #     self.classification_head = nn.Linear(hidden_size, num_classes)  # type: ignore

    def forward(self, x):
        x = self.patch_embedding(x)
        if hasattr(self, "cls_token"):
            cls_token = self.cls_token.expand(x.shape[0], -1, -1)
            x = torch.cat((cls_token, x), dim=1)
        hidden_states_out = []
        for blk in self.blocks:
            x = blk(x)
            hidden_states_out.append(x)
        x = self.norm(x)
        # if hasattr(self, "classification_head"):
        #     x = self.classification_head(x[:, 0])
        return x, hidden_states_out


class M3DCLIP(PreTrainedModel):
    config_class = M3DCLIPConfig

    def __init__(self, config):
        super().__init__(config)
        self.vision_encoder = ViT(
            in_channels=config.in_channels,
            img_size=config.img_size,
            patch_size=config.patch_size,
            hidden_size=config.hidden_size,
            mlp_dim=config.mlp_dim,
            num_layers=config.num_layers,
            num_heads=config.num_heads,
            pos_embed=config.pos_embed,
            dropout_rate=config.dropout_rate,
            spatial_dims=config.spatial_dims,
            classification=True,
        )
        # configuration = BertConfig()
        # self.language_encoder = BertModel(configuration)
        self.language_encoder = BertModel.from_pretrained(config.language_model_name_or_path)

        self.mm_vision_proj = nn.Linear(config.hidden_size, config.hidden_size)
        self.mm_language_proj = nn.Linear(config.hidden_size, config.hidden_size)

        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.local_loss = config.local_loss
        self.gather_loss = config.gather_loss

    def encode_image(self, image):
        image_feats, _ = self.vision_encoder(image)
        image_feats = self.mm_vision_proj(image_feats)
        image_feats = F.normalize(image_feats, dim=-1)

        return image_feats

    def encode_text(self, input_id, attention_mask):
        text_feats = self.language_encoder(input_id, attention_mask=attention_mask)["last_hidden_state"]
        text_feats = self.mm_language_proj(text_feats)
        text_feats = F.normalize(text_feats, dim=-1)

        return text_feats


    def forward(self, images, input_ids, attention_mask, labels, **kwargs):
        image_features = self.encode_image(images)[:, 0]
        text_features = self.encode_text(input_ids, attention_mask)[:, 0]

        if self.gather_loss:
            all_image_features, all_text_features = gather_features(image_features, text_features)
            if self.local_loss:
                logits_per_image = self.logit_scale * image_features @ all_text_features.T
                logits_per_text = self.logit_scale * text_features @ all_image_features.T
            else:
                logits_per_image = self.logit_scale * all_image_features @ all_text_features.T
                logits_per_text = logits_per_image.T
        else:
            logits_per_image = self.logit_scale * image_features @ text_features.T
            logits_per_text = self.logit_scale * text_features @ image_features.T

        loss = (
                           F.cross_entropy(logits_per_image, labels) +
                           F.cross_entropy(logits_per_text, labels)
                   ) / 2

        ret = {
            "loss": loss,
            "logits": (logits_per_image + logits_per_text) / 2.0,
        }

        return ret