File size: 4,277 Bytes
5a56727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f831bae
 
 
 
 
 
 
 
 
5a56727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f831bae
5a56727
 
 
 
9e8a34e
 
 
 
 
39c8ef4
 
6cc241b
 
5bcd218
 
 
 
f831bae
 
 
 
 
 
 
 
 
5a56727
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
base_model: google/pegasus-xsum
tags:
- generated_from_trainer
metrics:
- rouge
- precision
- recall
- f1
model-index:
- name: LLM_Teached_Pegasus_50k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LLM_Teached_Pegasus_50k

This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6258
- Rouge1: 0.4708
- Rouge2: 0.2214
- Rougel: 0.3861
- Rougelsum: 0.3863
- Gen Len: 26.5411
- Precision: 0.9108
- Recall: 0.9093
- F1: 0.9099

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | F1     | Gen Len | Validation Loss | Precision | Recall | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:------:|:-------:|:---------------:|:---------:|:------:|:------:|:------:|:------:|:---------:|
| No log        | 1.0   | 390  | 0.9034 | 26.2967 | 1.8258          | 0.9049    | 0.9023 | 0.4338 | 0.1906 | 0.3496 | 0.3498    |
| 2.1621        | 2.0   | 781  | 0.9054 | 26.2727 | 1.7537          | 0.9068    | 0.9044 | 0.4449 | 0.2005 | 0.3633 | 0.3633    |
| 1.8794        | 3.0   | 1172 | 0.9066 | 26.4345 | 1.7268          | 0.9078    | 0.9058 | 0.4518 | 0.2061 | 0.3696 | 0.3695    |
| 1.8271        | 4.0   | 1560 | 0.9069 | 26.3971 | 1.7157          | 0.9082    | 0.906  | 0.4539 | 0.2075 | 0.3716 | 0.3714    |
| 1.8271        | 5.0   | 1951 | 0.9074 | 26.3015 | 1.7033          | 0.9087    | 0.9065 | 0.4561 | 0.2098 | 0.3735 | 0.3734    |
| 1.8067        | 6.0   | 2340 | 0.9077 | 26.4389 | 1.6897          | 0.9089    | 0.9069 | 0.4592 | 0.2114 | 0.3762 | 0.3759    |
| 1.7833        | 7.0   | 2731 | 0.9079 | 26.3745 | 1.6819          | 0.9092    | 0.9071 | 0.4598 | 0.2115 | 0.3764 | 0.376     |
| 1.7683        | 8.0   | 3120 | 0.9083 | 26.6204 | 1.6763          | 0.9094    | 0.9076 | 0.4621 | 0.2133 | 0.3791 | 0.3789    |
| 1.7559        | 9.0   | 3511 | 0.9086 | 26.424  | 1.6662          | 0.9098    | 0.9078 | 0.4632 | 0.215  | 0.38   | 0.3799    |
| 1.7559        | 10.0  | 3902 | 0.9089 | 26.5425 | 1.6594          | 0.9099    | 0.9082 | 0.4651 | 0.2168 | 0.3812 | 0.3812    |
| 1.7357        | 11.0  | 4293 | 0.9091 | 26.6051 | 1.6555          | 0.91      | 0.9086 | 0.4663 | 0.2178 | 0.3824 | 0.3823    |
| 1.7297        | 12.0  | 4680 | 0.9092 | 26.4393 | 1.6508          | 0.9103    | 0.9084 | 0.4668 | 0.2175 | 0.3823 | 0.3822    |
| 1.7165        | 13.0  | 5071 | 0.9094 | 26.6385 | 1.6451          | 0.9103    | 0.9089 | 0.4687 | 0.2191 | 0.3834 | 0.3834    |
| 1.7165        | 14.0  | 5462 | 0.9095 | 26.4156 | 1.6405          | 0.9106    | 0.9087 | 0.4691 | 0.2193 | 0.3845 | 0.3844    |
| 1.7068        | 15.0  | 5853 | 0.9097 | 26.4571 | 1.6383          | 0.9108    | 0.9089 | 0.4699 | 0.2204 | 0.3853 | 0.3853    |
| 1.7004        | 16.0  | 6240 | 1.6346 | 0.4703  | 0.2204          | 0.385     | 0.385  | 26.4247| 0.9108 | 0.9089 | 0.9097    |
| 1.6923        | 17.0  | 6631 | 1.6305 | 0.4706  | 0.221           | 0.3855    | 0.3856 | 26.4436| 0.911  | 0.9091 | 0.9099    |
| 1.6839        | 18.0  | 7022 | 1.6285 | 0.4712  | 0.2215          | 0.3862    | 0.3864 | 26.612 | 0.9106 | 0.9094 | 0.9098    |
| 1.6839        | 19.0  | 7413 | 1.6263 | 0.4709  | 0.2217          | 0.3862    | 0.3864 | 26.5291| 0.9108 | 0.9093 | 0.9099    |
| 1.6743        | 19.99 | 7800 | 1.6258 | 0.4708  | 0.2214          | 0.3861    | 0.3863 | 26.5411| 0.9108 | 0.9093 | 0.9099    |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.15.0