File size: 5,914 Bytes
c2ced9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import math
from dataclasses import dataclass
from enum import Enum
from typing import NamedTuple, Tuple
import torch
from .DiffAE_support_choices import *
from .DiffAE_support_config_base import BaseConfig
from torch import nn
from torch.nn import init
from .DiffAE_model_blocks import *
from .DiffAE_model_nn import timestep_embedding
from .DiffAE_model_unet import *
class LatentNetType(Enum):
none = 'none'
# injecting inputs into the hidden layers
skip = 'skip'
class LatentNetReturn(NamedTuple):
pred: torch.Tensor = None
@dataclass
class MLPSkipNetConfig(BaseConfig):
"""
default MLP for the latent DPM in the paper!
"""
num_channels: int
skip_layers: Tuple[int]
num_hid_channels: int
num_layers: int
num_time_emb_channels: int = 64
activation: Activation = Activation.silu
use_norm: bool = True
condition_bias: float = 1
dropout: float = 0
last_act: Activation = Activation.none
num_time_layers: int = 2
time_last_act: bool = False
def make_model(self):
return MLPSkipNet(self)
class MLPSkipNet(nn.Module):
"""
concat x to hidden layers
default MLP for the latent DPM in the paper!
"""
def __init__(self, conf: MLPSkipNetConfig):
super().__init__()
self.conf = conf
layers = []
for i in range(conf.num_time_layers):
if i == 0:
a = conf.num_time_emb_channels
b = conf.num_channels
else:
a = conf.num_channels
b = conf.num_channels
layers.append(nn.Linear(a, b))
if i < conf.num_time_layers - 1 or conf.time_last_act:
layers.append(conf.activation.get_act())
self.time_embed = nn.Sequential(*layers)
self.layers = nn.ModuleList([])
for i in range(conf.num_layers):
if i == 0:
act = conf.activation
norm = conf.use_norm
cond = True
a, b = conf.num_channels, conf.num_hid_channels
dropout = conf.dropout
elif i == conf.num_layers - 1:
act = Activation.none
norm = False
cond = False
a, b = conf.num_hid_channels, conf.num_channels
dropout = 0
else:
act = conf.activation
norm = conf.use_norm
cond = True
a, b = conf.num_hid_channels, conf.num_hid_channels
dropout = conf.dropout
if i in conf.skip_layers:
a += conf.num_channels
self.layers.append(
MLPLNAct(
a,
b,
norm=norm,
activation=act,
cond_channels=conf.num_channels,
use_cond=cond,
condition_bias=conf.condition_bias,
dropout=dropout,
))
self.last_act = conf.last_act.get_act()
def forward(self, x, t, **kwargs):
t = timestep_embedding(t, self.conf.num_time_emb_channels)
cond = self.time_embed(t)
h = x
for i in range(len(self.layers)):
if i in self.conf.skip_layers:
# injecting input into the hidden layers
h = torch.cat([h, x], dim=1)
h = self.layers[i].forward(x=h, cond=cond)
h = self.last_act(h)
return LatentNetReturn(h)
class MLPLNAct(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
norm: bool,
use_cond: bool,
activation: Activation,
cond_channels: int,
condition_bias: float = 0,
dropout: float = 0,
):
super().__init__()
self.activation = activation
self.condition_bias = condition_bias
self.use_cond = use_cond
self.linear = nn.Linear(in_channels, out_channels)
self.act = activation.get_act()
if self.use_cond:
self.linear_emb = nn.Linear(cond_channels, out_channels)
self.cond_layers = nn.Sequential(self.act, self.linear_emb)
if norm:
self.norm = nn.LayerNorm(out_channels)
else:
self.norm = nn.Identity()
if dropout > 0:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = nn.Identity()
self.init_weights()
def init_weights(self):
for module in self.modules():
if isinstance(module, nn.Linear):
if self.activation == Activation.relu:
init.kaiming_normal_(module.weight,
a=0,
nonlinearity='relu')
elif self.activation == Activation.lrelu:
init.kaiming_normal_(module.weight,
a=0.2,
nonlinearity='leaky_relu')
elif self.activation == Activation.silu:
init.kaiming_normal_(module.weight,
a=0,
nonlinearity='relu')
else:
# leave it as default
pass
def forward(self, x, cond=None):
x = self.linear(x)
if self.use_cond:
# (n, c) or (n, c * 2)
cond = self.cond_layers(cond)
cond = (cond, None)
# scale shift first
x = x * (self.condition_bias + cond[0])
if cond[1] is not None:
x = x + cond[1]
# then norm
x = self.norm(x)
else:
# no condition
x = self.norm(x)
x = self.act(x)
x = self.dropout(x)
return x |