File size: 18,963 Bytes
c2ced9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
import math
import numpy as np
from abc import abstractmethod
from dataclasses import dataclass
from numbers import Number
import torch as th
import torch.nn.functional as F
from .DiffAE_support_choices import *
from .DiffAE_support_config_base import BaseConfig
from torch import nn
from .DiffAE_model_nn import (avg_pool_nd, conv_nd, linear, normalization,
timestep_embedding, torch_checkpoint, zero_module)
class ScaleAt(Enum):
after_norm = 'afternorm'
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb=None, cond=None, lateral=None):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb=None, cond=None, lateral=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb=emb, cond=cond, lateral=lateral)
else:
x = layer(x)
return x
@dataclass
class ResBlockConfig(BaseConfig):
channels: int
emb_channels: int
dropout: float
out_channels: int = None
# condition the resblock with time (and encoder's output)
use_condition: bool = True
# whether to use 3x3 conv for skip path when the channels aren't matched
use_conv: bool = False
group_norm_limit: int = 32
# dimension of conv (always 2 = 2d)
dims: int = 2
# gradient checkpoint
use_checkpoint: bool = False
up: bool = False
down: bool = False
# whether to condition with both time & encoder's output
two_cond: bool = False
# number of encoders' output channels
cond_emb_channels: int = None
# suggest: False
has_lateral: bool = False
lateral_channels: int = None
# whether to init the convolution with zero weights
# this is default from BeatGANs and seems to help learning
use_zero_module: bool = True
def __post_init__(self):
self.out_channels = self.out_channels or self.channels
self.cond_emb_channels = self.cond_emb_channels or self.emb_channels
def make_model(self):
return ResBlock(self)
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
total layers:
in_layers
- norm
- act
- conv
out_layers
- norm
- (modulation)
- act
- conv
"""
def __init__(self, conf: ResBlockConfig):
super().__init__()
self.conf = conf
#############################
# IN LAYERS
#############################
assert conf.lateral_channels is None
layers = [
normalization(conf.channels, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
nn.SiLU(),
conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1)
]
self.in_layers = nn.Sequential(*layers)
self.updown = conf.up or conf.down
if conf.up:
self.h_upd = Upsample(conf.channels, False, conf.dims)
self.x_upd = Upsample(conf.channels, False, conf.dims)
elif conf.down:
self.h_upd = Downsample(conf.channels, False, conf.dims)
self.x_upd = Downsample(conf.channels, False, conf.dims)
else:
self.h_upd = self.x_upd = nn.Identity()
#############################
# OUT LAYERS CONDITIONS
#############################
if conf.use_condition:
# condition layers for the out_layers
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(conf.emb_channels, 2 * conf.out_channels),
)
if conf.two_cond:
self.cond_emb_layers = nn.Sequential(
nn.SiLU(),
linear(conf.cond_emb_channels, conf.out_channels),
)
#############################
# OUT LAYERS (ignored when there is no condition)
#############################
# original version
conv = conv_nd(conf.dims,
conf.out_channels,
conf.out_channels,
3,
padding=1)
if conf.use_zero_module:
# zere out the weights
# it seems to help training
conv = zero_module(conv)
# construct the layers
# - norm
# - (modulation)
# - act
# - dropout
# - conv
layers = []
layers += [
normalization(conf.out_channels, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
nn.SiLU(),
nn.Dropout(p=conf.dropout),
conv,
]
self.out_layers = nn.Sequential(*layers)
#############################
# SKIP LAYERS
#############################
if conf.out_channels == conf.channels:
# cannot be used with gatedconv, also gatedconv is alsways used as the first block
self.skip_connection = nn.Identity()
else:
if conf.use_conv:
kernel_size = 3
padding = 1
else:
kernel_size = 1
padding = 0
self.skip_connection = conv_nd(conf.dims,
conf.channels,
conf.out_channels,
kernel_size,
padding=padding)
def forward(self, x, emb=None, cond=None, lateral=None):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
Args:
x: input
lateral: lateral connection from the encoder
"""
return torch_checkpoint(self._forward, (x, emb, cond, lateral),
self.conf.use_checkpoint)
def _forward(
self,
x,
emb=None,
cond=None,
lateral=None,
):
"""
Args:
lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally
"""
if self.conf.has_lateral:
# lateral may be supplied even if it doesn't require
# the model will take the lateral only if "has_lateral"
assert lateral is not None
x = th.cat([x, lateral], dim=1)
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
if self.conf.use_condition:
# it's possible that the network may not receieve the time emb
# this happens with autoenc and setting the time_at
if emb is not None:
emb_out = self.emb_layers(emb).type(h.dtype)
else:
emb_out = None
if self.conf.two_cond:
# it's possible that the network is two_cond
# but it doesn't get the second condition
# in which case, we ignore the second condition
# and treat as if the network has one condition
if cond is None:
cond_out = None
else:
cond_out = self.cond_emb_layers(cond).type(h.dtype)
if cond_out is not None:
while len(cond_out.shape) < len(h.shape):
cond_out = cond_out[..., None]
else:
cond_out = None
# this is the new refactored code
h = apply_conditions(
h=h,
emb=emb_out,
cond=cond_out,
layers=self.out_layers,
scale_bias=1,
in_channels=self.conf.out_channels,
up_down_layer=None,
)
return self.skip_connection(x) + h
def apply_conditions(
h,
emb=None,
cond=None,
layers: nn.Sequential = None,
scale_bias: float = 1,
in_channels: int = 512,
up_down_layer: nn.Module = None,
):
"""
apply conditions on the feature maps
Args:
emb: time conditional (ready to scale + shift)
cond: encoder's conditional (read to scale + shift)
"""
two_cond = emb is not None and cond is not None
if emb is not None:
# adjusting shapes
while len(emb.shape) < len(h.shape):
emb = emb[..., None]
if two_cond:
# adjusting shapes
while len(cond.shape) < len(h.shape):
cond = cond[..., None]
# time first
scale_shifts = [emb, cond]
else:
# "cond" is not used with single cond mode
scale_shifts = [emb]
# support scale, shift or shift only
for i, each in enumerate(scale_shifts):
if each is None:
# special case: the condition is not provided
a = None
b = None
else:
if each.shape[1] == in_channels * 2:
a, b = th.chunk(each, 2, dim=1)
else:
a = each
b = None
scale_shifts[i] = (a, b)
# condition scale bias could be a list
if isinstance(scale_bias, Number):
biases = [scale_bias] * len(scale_shifts)
else:
# a list
biases = scale_bias
# default, the scale & shift are applied after the group norm but BEFORE SiLU
pre_layers, post_layers = layers[0], layers[1:]
# spilt the post layer to be able to scale up or down before conv
# post layers will contain only the conv
mid_layers, post_layers = post_layers[:-2], post_layers[-2:]
h = pre_layers(h)
# scale and shift for each condition
for i, (scale, shift) in enumerate(scale_shifts):
# if scale is None, it indicates that the condition is not provided
if scale is not None:
h = h * (biases[i] + scale)
if shift is not None:
h = h + shift
h = mid_layers(h)
# upscale or downscale if any just before the last conv
if up_down_layer is not None:
h = up_down_layer(h)
h = post_layers(h)
return h
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims,
self.channels,
self.out_channels,
3,
padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
mode="nearest")
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=1)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
group_norm_limit=32,
use_checkpoint=False,
use_new_attention_order=False,
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.use_checkpoint = use_checkpoint
self.norm = normalization(channels, limit=group_norm_limit)
self.qkv = conv_nd(1, channels, channels * 3, 1)
if use_new_attention_order:
# split qkv before split heads
self.attention = QKVAttention(self.num_heads)
else:
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, x):
return torch_checkpoint(self._forward, (x, ), self.use_checkpoint)
def _forward(self, x):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial**2) * c
model.total_ops += th.DoubleTensor([matmul_ops])
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch,
dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts", q * scale,
k * scale) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts",
(q * scale).view(bs * self.n_heads, ch, length),
(k * scale).view(bs * self.n_heads, ch, length),
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight,
v.reshape(bs * self.n_heads, ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(
self,
spacial_dim: int,
embed_dim: int,
num_heads_channels: int,
output_dim: int = None,
):
super().__init__()
self.positional_embedding = nn.Parameter(
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1) # NC(HW)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
|