File size: 13,619 Bytes
c2ced9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import copy

import numpy as np
import torch
from pytorch_lightning.callbacks import *
from torch.optim.optimizer import Optimizer

from transformers import PreTrainedModel

from .DiffAEConfig import DiffAEConfig
from .DiffAE_support import *

class DiffAE(PreTrainedModel):
    config_class = DiffAEConfig
    def __init__(self, config):
        super().__init__(config)

        conf = ukbb_autoenc(n_latents=config.latent_dim) 
        conf.__dict__.update(**vars(config)) #update the supplied DiffAE params 
        
        if config.test_with_TEval:
            conf.T_inv = conf.T_eval
            conf.T_step = conf.T_eval
            
        conf.fp16 = config.ampmode not in ["32", "32-true"]
            
        conf.refresh_values()
        conf.make_model_conf()
        
        self.config = config
        self.conf = conf
        
        self.net = conf.make_model_conf().make_model()
        self.ema_net = copy.deepcopy(self.net)
        self.ema_net.requires_grad_(False)
        self.ema_net.eval()

        model_size = sum(param.data.nelement() for param in self.net.parameters())
        print('Model params: %.2f M' % (model_size / 1024 / 1024))

        self.sampler = conf.make_diffusion_conf().make_sampler()
        self.eval_sampler = conf.make_eval_diffusion_conf().make_sampler()

        # this is shared for both model and latent
        self.T_sampler = conf.make_T_sampler()

        if conf.train_mode.use_latent_net():
            self.latent_sampler = conf.make_latent_diffusion_conf(
            ).make_sampler()
            self.eval_latent_sampler = conf.make_latent_eval_diffusion_conf(
            ).make_sampler()
        else:
            self.latent_sampler = None
            self.eval_latent_sampler = None

        # initial variables for consistent sampling
        self.register_buffer('x_T', torch.randn(conf.sample_size, conf.in_channels, *conf.input_shape))

        if conf.pretrain is not None: 
            print(f'loading pretrain ... {conf.pretrain.name}')
            state = torch.load(conf.pretrain.path, map_location='cpu')
            print('step:', state['global_step'])
            self.load_state_dict(state['state_dict'], strict=False)

        if conf.latent_infer_path is not None:
            print('loading latent stats ...')
            state = torch.load(conf.latent_infer_path)
            self.conds = state['conds']
            self.register_buffer('conds_mean', state['conds_mean'][None, :])
            self.register_buffer('conds_std', state['conds_std'][None, :])
        else:
            self.conds_mean = None
            self.conds_std = None
    
    def normalise(self, cond):
        cond = (cond - self.conds_mean.to(self.device)) / self.conds_std.to(
            self.device)
        return cond

    def denormalise(self, cond):
        cond = (cond * self.conds_std.to(self.device)) + self.conds_mean.to(
            self.device)
        return cond

    def sample(self, N, device, T=None, T_latent=None):
        if T is None:
            sampler = self.eval_sampler
            latent_sampler = self.latent_sampler
        else:
            sampler = self.conf._make_diffusion_conf(T).make_sampler()
            latent_sampler = self.conf._make_latent_diffusion_conf(T_latent).make_sampler()

        noise = torch.randn(N,
                            self.conf.in_channels,
                            *self.conf.input_shape,
                            device=device)
        pred_img = render_uncondition(
            self.conf,
            self.ema_net,
            noise,
            sampler=sampler,
            latent_sampler=latent_sampler,
            conds_mean=self.conds_mean,
            conds_std=self.conds_std,
        )
        pred_img = (pred_img + 1) / 2
        return pred_img

    def render(self, noise, cond=None, T=None, use_ema=True):
        if T is None:
            sampler = self.eval_sampler
        else:
            sampler = self.conf._make_diffusion_conf(T).make_sampler()

        if cond is not None:
            pred_img = render_condition(self.conf,
                                        self.ema_net if use_ema else self.net,
                                        noise,
                                        sampler=sampler,
                                        cond=cond)
        else:
            pred_img = render_uncondition(self.conf,
                                          self.ema_net if use_ema else self.net,
                                          noise,
                                          sampler=sampler,
                                          latent_sampler=None)
        pred_img = (pred_img + 1) / 2
        return pred_img

    def encode(self, x, use_ema=True):
        assert self.conf.model_type.has_autoenc()
        return self.ema_net.encoder.forward(x) if use_ema else self.net.encoder.forward(x)

    def encode_stochastic(self, x, cond, T=None, use_ema=True):
        if T is None:
            sampler = self.eval_sampler
        else:
            sampler = self.conf._make_diffusion_conf(T).make_sampler()
        out = sampler.ddim_reverse_sample_loop(self.ema_net if use_ema else self.net,
                                               x,
                                               model_kwargs={'cond': cond})
        return out['sample']

    def forward(self, x_start=None, noise=None, ema_model: bool = False):
        with amp.autocast(False):
            model = self.ema_net if ema_model else self.net
            return self.eval_sampler.sample(
                model=model,
                noise=noise,
                x_start=x_start,
                shape=noise.shape if noise is not None else x_start.shape,
            )
    
    def is_last_accum(self, batch_idx):
        """
        is it the last gradient accumulation loop? 
        used with gradient_accum > 1 and to see if the optimizer will perform "step" in this iteration or not
        """
        return (batch_idx + 1) % self.conf.accum_batches == 0
    
    def training_step(self, batch, batch_idx):
        """
        given an input, calculate the loss function
        no optimization at this stage.
        """
        with amp.autocast(False):
            # forward
            if self.conf.train_mode.require_dataset_infer():
                # this mode as pre-calculated cond
                cond = batch[0]
                if self.conf.latent_znormalize:
                    cond = (cond - self.conds_mean.to(
                        self.device)) / self.conds_std.to(self.device)
            else:
                imgs, idxs = batch['inp']['data'], batch_idx
                # print(f'(rank {self.global_rank}) batch size:', len(imgs))
                x_start = imgs

            if self.conf.train_mode == TrainMode.diffusion:
                """
                main training mode!!!
                """
                # with numpy seed we have the problem that the sample t's are related!
                t, weight = self.T_sampler.sample(len(x_start), x_start.device)
                losses = self.sampler.training_losses(model=self.net,
                                                        x_start=x_start,
                                                        t=t)
            elif self.conf.train_mode.is_latent_diffusion():
                """
                training the latent variables!
                """
                # diffusion on the latent
                t, weight = self.T_sampler.sample(len(cond), cond.device)
                latent_losses = self.latent_sampler.training_losses(
                    model=self.net.latent_net, x_start=cond, t=t)
                # train only do the latent diffusion
                losses = {
                    'latent': latent_losses['loss'],
                    'loss': latent_losses['loss']
                }
            else:
                raise NotImplementedError()

            loss = losses['loss'].mean()
            loss_dict = {"train_loss": loss}
            for key in ['vae', 'latent', 'mmd', 'chamfer', 'arg_cnt']:
                if key in losses:
                    loss_dict[f'train_{key}'] = losses[key].mean()
            self.log_dict(loss_dict, on_step=True, on_epoch=True, reduce_fx="mean", sync_dist=True, batch_size=batch['inp']['data'].shape[0])

        return loss

    def on_train_batch_end(self, outputs, batch, batch_idx: int) -> None:
        """
        after each training step ...
        """
        if self.is_last_accum(batch_idx):
            # only apply ema on the last gradient accumulation step,
            # if it is the iteration that has optimizer.step()
            if self.conf.train_mode == TrainMode.latent_diffusion:
                # it trains only the latent hence change only the latent
                ema(self.net.latent_net, self.ema_net.latent_net,
                    self.conf.ema_decay)
            else:
                ema(self.net, self.ema_net, self.conf.ema_decay)

    def on_before_optimizer_step(self, optimizer: Optimizer) -> None:
        # fix the fp16 + clip grad norm problem with pytorch lightinng
        # this is the currently correct way to do it
        if self.conf.grad_clip > 0:
            # from trainer.params_grads import grads_norm, iter_opt_params
            params = [
                p for group in optimizer.param_groups for p in group['params']
            ]
            # print('before:', grads_norm(iter_opt_params(optimizer)))
            torch.nn.utils.clip_grad_norm_(params,
                                           max_norm=self.conf.grad_clip)
            # print('after:', grads_norm(iter_opt_params(optimizer)))
    
    #Validation  
    def validation_step(self, batch, batch_idx):
        _, prediction_ema = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_eval, T_step=self.conf.T_eval, use_ema=True)
        _, prediction_base = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_eval, T_step=self.conf.T_eval, use_ema=False)        

        inp = batch['inp']['data'].cpu() 
        inp = (inp + 1) / 2
        
        _, val_ssim_ema = self._eval_prediction(inp, prediction_ema)
        _, val_ssim_base = self._eval_prediction(inp, prediction_base)
        
        self.log_dict({"val_ssim_ema": val_ssim_ema, "val_ssim_base": val_ssim_base, "val_loss": -val_ssim_ema}, on_step=True, on_epoch=True, reduce_fx="mean", sync_dist=True, batch_size=batch['inp']['data'].shape[0])
        self.img_logger("val_ema", batch_idx, inp, prediction_ema)
        self.img_logger("val_base", batch_idx, inp, prediction_base)
        
    def _eval_prediction(self, inp, prediction):
        prediction = prediction.detach().cpu() 
        prediction = prediction.numpy() if prediction.dtype not in {torch.bfloat16, torch.float16} else prediction.to(dtype=torch.float32).numpy()
        if self.config.grey2RGB in [0, 2]:
            inp = inp[:, 1, ...].unsqueeze(1)
            prediction = np.expand_dims(prediction[:, 1, ...], axis=1)
        val_ssim = getSSIM(inp.numpy(), prediction, data_range=1) 
        return prediction, val_ssim
        
    def inference_pass(self, inp, T_inv, T_step, use_ema=True):
        semantic_latent = self.encode(inp, use_ema=use_ema) 
        if self.config.test_emb_only:
            return semantic_latent, None
        stochastic_latent = self.encode_stochastic(inp, semantic_latent, T=T_inv) 
        prediction = self.render(stochastic_latent, semantic_latent, T=T_step, use_ema=use_ema) 
        return semantic_latent, prediction
    
    # Testing
    def test_step(self, batch, batch_idx):
        emb, recon = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_inv, T_step=self.conf.T_step, use_ema=self.config.test_ema)

        emb = emb.detach().cpu()
        emb = emb.numpy() if emb.dtype not in {torch.bfloat16, torch.float16} else emb.to(dtype=torch.float32).numpy()

        return emb, recon

    #Prediction
    def predict_step(self, batch, batch_idx):
        emb = self.encode(batch['inp']['data']).detach().cpu()
        return emb.numpy() if emb.dtype not in {torch.bfloat16, torch.float16} else emb.to(dtype=torch.float32).numpy()

    def configure_optimizers(self):
        if self.conf.optimizer == OptimizerType.adam:
            optim = torch.optim.Adam(self.net.parameters(),
                                     lr=self.conf.lr,
                                     weight_decay=self.conf.weight_decay)
        elif self.conf.optimizer == OptimizerType.adamw:
            optim = torch.optim.AdamW(self.net.parameters(),
                                      lr=self.conf.lr,
                                      weight_decay=self.conf.weight_decay)
        else:
            raise NotImplementedError()
        out = {'optimizer': optim}
        if self.conf.warmup > 0:
            sched = torch.optim.lr_scheduler.LambdaLR(optim,
                                                      lr_lambda=WarmupLR(
                                                          self.conf.warmup))
            out['lr_scheduler'] = {
                'scheduler': sched,
                'interval': 'step',
            }
        return out

    def split_tensor(self, x):
        """
        extract the tensor for a corresponding "worker" in the batch dimension

        Args:
            x: (n, c)

        Returns: x: (n_local, c)
        """
        n = len(x)
        rank = self.global_rank
        world_size = get_world_size()
        # print(f'rank: {rank}/{world_size}')
        per_rank = n // world_size
        return x[rank * per_rank:(rank + 1) * per_rank]