File size: 13,619 Bytes
c2ced9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import copy
import numpy as np
import torch
from pytorch_lightning.callbacks import *
from torch.optim.optimizer import Optimizer
from transformers import PreTrainedModel
from .DiffAEConfig import DiffAEConfig
from .DiffAE_support import *
class DiffAE(PreTrainedModel):
config_class = DiffAEConfig
def __init__(self, config):
super().__init__(config)
conf = ukbb_autoenc(n_latents=config.latent_dim)
conf.__dict__.update(**vars(config)) #update the supplied DiffAE params
if config.test_with_TEval:
conf.T_inv = conf.T_eval
conf.T_step = conf.T_eval
conf.fp16 = config.ampmode not in ["32", "32-true"]
conf.refresh_values()
conf.make_model_conf()
self.config = config
self.conf = conf
self.net = conf.make_model_conf().make_model()
self.ema_net = copy.deepcopy(self.net)
self.ema_net.requires_grad_(False)
self.ema_net.eval()
model_size = sum(param.data.nelement() for param in self.net.parameters())
print('Model params: %.2f M' % (model_size / 1024 / 1024))
self.sampler = conf.make_diffusion_conf().make_sampler()
self.eval_sampler = conf.make_eval_diffusion_conf().make_sampler()
# this is shared for both model and latent
self.T_sampler = conf.make_T_sampler()
if conf.train_mode.use_latent_net():
self.latent_sampler = conf.make_latent_diffusion_conf(
).make_sampler()
self.eval_latent_sampler = conf.make_latent_eval_diffusion_conf(
).make_sampler()
else:
self.latent_sampler = None
self.eval_latent_sampler = None
# initial variables for consistent sampling
self.register_buffer('x_T', torch.randn(conf.sample_size, conf.in_channels, *conf.input_shape))
if conf.pretrain is not None:
print(f'loading pretrain ... {conf.pretrain.name}')
state = torch.load(conf.pretrain.path, map_location='cpu')
print('step:', state['global_step'])
self.load_state_dict(state['state_dict'], strict=False)
if conf.latent_infer_path is not None:
print('loading latent stats ...')
state = torch.load(conf.latent_infer_path)
self.conds = state['conds']
self.register_buffer('conds_mean', state['conds_mean'][None, :])
self.register_buffer('conds_std', state['conds_std'][None, :])
else:
self.conds_mean = None
self.conds_std = None
def normalise(self, cond):
cond = (cond - self.conds_mean.to(self.device)) / self.conds_std.to(
self.device)
return cond
def denormalise(self, cond):
cond = (cond * self.conds_std.to(self.device)) + self.conds_mean.to(
self.device)
return cond
def sample(self, N, device, T=None, T_latent=None):
if T is None:
sampler = self.eval_sampler
latent_sampler = self.latent_sampler
else:
sampler = self.conf._make_diffusion_conf(T).make_sampler()
latent_sampler = self.conf._make_latent_diffusion_conf(T_latent).make_sampler()
noise = torch.randn(N,
self.conf.in_channels,
*self.conf.input_shape,
device=device)
pred_img = render_uncondition(
self.conf,
self.ema_net,
noise,
sampler=sampler,
latent_sampler=latent_sampler,
conds_mean=self.conds_mean,
conds_std=self.conds_std,
)
pred_img = (pred_img + 1) / 2
return pred_img
def render(self, noise, cond=None, T=None, use_ema=True):
if T is None:
sampler = self.eval_sampler
else:
sampler = self.conf._make_diffusion_conf(T).make_sampler()
if cond is not None:
pred_img = render_condition(self.conf,
self.ema_net if use_ema else self.net,
noise,
sampler=sampler,
cond=cond)
else:
pred_img = render_uncondition(self.conf,
self.ema_net if use_ema else self.net,
noise,
sampler=sampler,
latent_sampler=None)
pred_img = (pred_img + 1) / 2
return pred_img
def encode(self, x, use_ema=True):
assert self.conf.model_type.has_autoenc()
return self.ema_net.encoder.forward(x) if use_ema else self.net.encoder.forward(x)
def encode_stochastic(self, x, cond, T=None, use_ema=True):
if T is None:
sampler = self.eval_sampler
else:
sampler = self.conf._make_diffusion_conf(T).make_sampler()
out = sampler.ddim_reverse_sample_loop(self.ema_net if use_ema else self.net,
x,
model_kwargs={'cond': cond})
return out['sample']
def forward(self, x_start=None, noise=None, ema_model: bool = False):
with amp.autocast(False):
model = self.ema_net if ema_model else self.net
return self.eval_sampler.sample(
model=model,
noise=noise,
x_start=x_start,
shape=noise.shape if noise is not None else x_start.shape,
)
def is_last_accum(self, batch_idx):
"""
is it the last gradient accumulation loop?
used with gradient_accum > 1 and to see if the optimizer will perform "step" in this iteration or not
"""
return (batch_idx + 1) % self.conf.accum_batches == 0
def training_step(self, batch, batch_idx):
"""
given an input, calculate the loss function
no optimization at this stage.
"""
with amp.autocast(False):
# forward
if self.conf.train_mode.require_dataset_infer():
# this mode as pre-calculated cond
cond = batch[0]
if self.conf.latent_znormalize:
cond = (cond - self.conds_mean.to(
self.device)) / self.conds_std.to(self.device)
else:
imgs, idxs = batch['inp']['data'], batch_idx
# print(f'(rank {self.global_rank}) batch size:', len(imgs))
x_start = imgs
if self.conf.train_mode == TrainMode.diffusion:
"""
main training mode!!!
"""
# with numpy seed we have the problem that the sample t's are related!
t, weight = self.T_sampler.sample(len(x_start), x_start.device)
losses = self.sampler.training_losses(model=self.net,
x_start=x_start,
t=t)
elif self.conf.train_mode.is_latent_diffusion():
"""
training the latent variables!
"""
# diffusion on the latent
t, weight = self.T_sampler.sample(len(cond), cond.device)
latent_losses = self.latent_sampler.training_losses(
model=self.net.latent_net, x_start=cond, t=t)
# train only do the latent diffusion
losses = {
'latent': latent_losses['loss'],
'loss': latent_losses['loss']
}
else:
raise NotImplementedError()
loss = losses['loss'].mean()
loss_dict = {"train_loss": loss}
for key in ['vae', 'latent', 'mmd', 'chamfer', 'arg_cnt']:
if key in losses:
loss_dict[f'train_{key}'] = losses[key].mean()
self.log_dict(loss_dict, on_step=True, on_epoch=True, reduce_fx="mean", sync_dist=True, batch_size=batch['inp']['data'].shape[0])
return loss
def on_train_batch_end(self, outputs, batch, batch_idx: int) -> None:
"""
after each training step ...
"""
if self.is_last_accum(batch_idx):
# only apply ema on the last gradient accumulation step,
# if it is the iteration that has optimizer.step()
if self.conf.train_mode == TrainMode.latent_diffusion:
# it trains only the latent hence change only the latent
ema(self.net.latent_net, self.ema_net.latent_net,
self.conf.ema_decay)
else:
ema(self.net, self.ema_net, self.conf.ema_decay)
def on_before_optimizer_step(self, optimizer: Optimizer) -> None:
# fix the fp16 + clip grad norm problem with pytorch lightinng
# this is the currently correct way to do it
if self.conf.grad_clip > 0:
# from trainer.params_grads import grads_norm, iter_opt_params
params = [
p for group in optimizer.param_groups for p in group['params']
]
# print('before:', grads_norm(iter_opt_params(optimizer)))
torch.nn.utils.clip_grad_norm_(params,
max_norm=self.conf.grad_clip)
# print('after:', grads_norm(iter_opt_params(optimizer)))
#Validation
def validation_step(self, batch, batch_idx):
_, prediction_ema = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_eval, T_step=self.conf.T_eval, use_ema=True)
_, prediction_base = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_eval, T_step=self.conf.T_eval, use_ema=False)
inp = batch['inp']['data'].cpu()
inp = (inp + 1) / 2
_, val_ssim_ema = self._eval_prediction(inp, prediction_ema)
_, val_ssim_base = self._eval_prediction(inp, prediction_base)
self.log_dict({"val_ssim_ema": val_ssim_ema, "val_ssim_base": val_ssim_base, "val_loss": -val_ssim_ema}, on_step=True, on_epoch=True, reduce_fx="mean", sync_dist=True, batch_size=batch['inp']['data'].shape[0])
self.img_logger("val_ema", batch_idx, inp, prediction_ema)
self.img_logger("val_base", batch_idx, inp, prediction_base)
def _eval_prediction(self, inp, prediction):
prediction = prediction.detach().cpu()
prediction = prediction.numpy() if prediction.dtype not in {torch.bfloat16, torch.float16} else prediction.to(dtype=torch.float32).numpy()
if self.config.grey2RGB in [0, 2]:
inp = inp[:, 1, ...].unsqueeze(1)
prediction = np.expand_dims(prediction[:, 1, ...], axis=1)
val_ssim = getSSIM(inp.numpy(), prediction, data_range=1)
return prediction, val_ssim
def inference_pass(self, inp, T_inv, T_step, use_ema=True):
semantic_latent = self.encode(inp, use_ema=use_ema)
if self.config.test_emb_only:
return semantic_latent, None
stochastic_latent = self.encode_stochastic(inp, semantic_latent, T=T_inv)
prediction = self.render(stochastic_latent, semantic_latent, T=T_step, use_ema=use_ema)
return semantic_latent, prediction
# Testing
def test_step(self, batch, batch_idx):
emb, recon = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_inv, T_step=self.conf.T_step, use_ema=self.config.test_ema)
emb = emb.detach().cpu()
emb = emb.numpy() if emb.dtype not in {torch.bfloat16, torch.float16} else emb.to(dtype=torch.float32).numpy()
return emb, recon
#Prediction
def predict_step(self, batch, batch_idx):
emb = self.encode(batch['inp']['data']).detach().cpu()
return emb.numpy() if emb.dtype not in {torch.bfloat16, torch.float16} else emb.to(dtype=torch.float32).numpy()
def configure_optimizers(self):
if self.conf.optimizer == OptimizerType.adam:
optim = torch.optim.Adam(self.net.parameters(),
lr=self.conf.lr,
weight_decay=self.conf.weight_decay)
elif self.conf.optimizer == OptimizerType.adamw:
optim = torch.optim.AdamW(self.net.parameters(),
lr=self.conf.lr,
weight_decay=self.conf.weight_decay)
else:
raise NotImplementedError()
out = {'optimizer': optim}
if self.conf.warmup > 0:
sched = torch.optim.lr_scheduler.LambdaLR(optim,
lr_lambda=WarmupLR(
self.conf.warmup))
out['lr_scheduler'] = {
'scheduler': sched,
'interval': 'step',
}
return out
def split_tensor(self, x):
"""
extract the tensor for a corresponding "worker" in the batch dimension
Args:
x: (n, c)
Returns: x: (n_local, c)
"""
n = len(x)
rank = self.global_rank
world_size = get_world_size()
# print(f'rank: {rank}/{world_size}')
per_rank = n // world_size
return x[rank * per_rank:(rank + 1) * per_rank] |