File size: 12,389 Bytes
3cdaa7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
import torch.nn as nn
import torch.nn.functional as F
from opt_einsum import contract as einsum
import torch.utils.checkpoint as checkpoint
from rfdiffusion.util import get_tips
from rfdiffusion.util_module import Dropout, create_custom_forward, rbf, init_lecun_normal
from rfdiffusion.Attention_module import Attention, FeedForwardLayer, AttentionWithBias
from rfdiffusion.Track_module import PairStr2Pair
import math

# Module contains classes and functions to generate initial embeddings

class PositionalEncoding2D(nn.Module):
    # Add relative positional encoding to pair features
    def __init__(self, d_model, minpos=-32, maxpos=32, p_drop=0.1):
        super(PositionalEncoding2D, self).__init__()
        self.minpos = minpos
        self.maxpos = maxpos
        self.nbin = abs(minpos)+maxpos+1
        self.emb = nn.Embedding(self.nbin, d_model)
        self.drop = nn.Dropout(p_drop)

    def forward(self, x, idx):
        bins = torch.arange(self.minpos, self.maxpos, device=x.device)
        seqsep = idx[:,None,:] - idx[:,:,None] # (B, L, L)
        #
        ib = torch.bucketize(seqsep, bins).long() # (B, L, L)
        emb = self.emb(ib) #(B, L, L, d_model)
        x = x + emb # add relative positional encoding
        return self.drop(x)

class MSA_emb(nn.Module):
    # Get initial seed MSA embedding
    def __init__(self, d_msa=256, d_pair=128, d_state=32, d_init=22+22+2+2,
                 minpos=-32, maxpos=32, p_drop=0.1, input_seq_onehot=False):
        super(MSA_emb, self).__init__()
        self.emb = nn.Linear(d_init, d_msa) # embedding for general MSA
        self.emb_q = nn.Embedding(22, d_msa) # embedding for query sequence -- used for MSA embedding
        self.emb_left = nn.Embedding(22, d_pair) # embedding for query sequence -- used for pair embedding
        self.emb_right = nn.Embedding(22, d_pair) # embedding for query sequence -- used for pair embedding
        self.emb_state = nn.Embedding(22, d_state)
        self.drop = nn.Dropout(p_drop)
        self.pos = PositionalEncoding2D(d_pair, minpos=minpos, maxpos=maxpos, p_drop=p_drop)

        self.input_seq_onehot=input_seq_onehot

        self.reset_parameter()

    def reset_parameter(self):
        self.emb = init_lecun_normal(self.emb)
        self.emb_q = init_lecun_normal(self.emb_q)
        self.emb_left = init_lecun_normal(self.emb_left)
        self.emb_right = init_lecun_normal(self.emb_right)
        self.emb_state = init_lecun_normal(self.emb_state)

        nn.init.zeros_(self.emb.bias)

    def forward(self, msa, seq, idx):
        # Inputs:
        #   - msa: Input MSA (B, N, L, d_init)
        #   - seq: Input Sequence (B, L)
        #   - idx: Residue index
        # Outputs:
        #   - msa: Initial MSA embedding (B, N, L, d_msa)
        #   - pair: Initial Pair embedding (B, L, L, d_pair)

        N = msa.shape[1] # number of sequenes in MSA

        # msa embedding
        msa = self.emb(msa) # (B, N, L, d_model) # MSA embedding

        # Sergey's one hot trick
        tmp = (seq @ self.emb_q.weight).unsqueeze(1) # (B, 1, L, d_model) -- query embedding

        msa = msa + tmp.expand(-1, N, -1, -1) # adding query embedding to MSA
        msa = self.drop(msa)

        # pair embedding
        # Sergey's one hot trick
        left  = (seq @ self.emb_left.weight)[:,None] # (B, 1, L, d_pair)
        right = (seq @ self.emb_right.weight)[:,:,None] # (B, L, 1, d_pair)

        pair = left + right # (B, L, L, d_pair)
        pair = self.pos(pair, idx) # add relative position

        # state embedding
        # Sergey's one hot trick
        state = self.drop(seq @ self.emb_state.weight)
        return msa, pair, state

class Extra_emb(nn.Module):
    # Get initial seed MSA embedding
    def __init__(self, d_msa=256, d_init=22+1+2, p_drop=0.1, input_seq_onehot=False):
        super(Extra_emb, self).__init__()
        self.emb = nn.Linear(d_init, d_msa) # embedding for general MSA
        self.emb_q = nn.Embedding(22, d_msa) # embedding for query sequence
        self.drop = nn.Dropout(p_drop)

        self.input_seq_onehot=input_seq_onehot

        self.reset_parameter()

    def reset_parameter(self):
        self.emb = init_lecun_normal(self.emb)
        nn.init.zeros_(self.emb.bias)

    def forward(self, msa, seq, idx):
        # Inputs:
        #   - msa: Input MSA (B, N, L, d_init)
        #   - seq: Input Sequence (B, L)
        #   - idx: Residue index
        # Outputs:
        #   - msa: Initial MSA embedding (B, N, L, d_msa)
        N = msa.shape[1] # number of sequenes in MSA
        msa = self.emb(msa) # (B, N, L, d_model) # MSA embedding

        # Sergey's one hot trick
        seq = (seq @ self.emb_q.weight).unsqueeze(1) # (B, 1, L, d_model) -- query embedding
        msa = msa + seq.expand(-1, N, -1, -1) # adding query embedding to MSA
        return self.drop(msa)

class TemplatePairStack(nn.Module):
    # process template pairwise features
    # use structure-biased attention
    def __init__(self, n_block=2, d_templ=64, n_head=4, d_hidden=16, p_drop=0.25):
        super(TemplatePairStack, self).__init__()
        self.n_block = n_block
        proc_s = [PairStr2Pair(d_pair=d_templ, n_head=n_head, d_hidden=d_hidden, p_drop=p_drop) for i in range(n_block)]
        self.block = nn.ModuleList(proc_s)
        self.norm = nn.LayerNorm(d_templ)
    def forward(self, templ, rbf_feat, use_checkpoint=False):
        B, T, L = templ.shape[:3]
        templ = templ.reshape(B*T, L, L, -1)

        for i_block in range(self.n_block):
            if use_checkpoint:
                templ = checkpoint.checkpoint(create_custom_forward(self.block[i_block]), templ, rbf_feat)
            else:
                templ = self.block[i_block](templ, rbf_feat)
        return self.norm(templ).reshape(B, T, L, L, -1)

class TemplateTorsionStack(nn.Module):
    def __init__(self, n_block=2, d_templ=64, n_head=4, d_hidden=16, p_drop=0.15):
        super(TemplateTorsionStack, self).__init__()
        self.n_block=n_block
        self.proj_pair = nn.Linear(d_templ+36, d_templ)
        proc_s = [AttentionWithBias(d_in=d_templ, d_bias=d_templ,
                                    n_head=n_head, d_hidden=d_hidden) for i in range(n_block)]
        self.row_attn = nn.ModuleList(proc_s)
        proc_s = [FeedForwardLayer(d_templ, 4, p_drop=p_drop) for i in range(n_block)]
        self.ff = nn.ModuleList(proc_s)
        self.norm = nn.LayerNorm(d_templ)

    def reset_parameter(self):
        self.proj_pair = init_lecun_normal(self.proj_pair)
        nn.init.zeros_(self.proj_pair.bias)

    def forward(self, tors, pair, rbf_feat, use_checkpoint=False):
        B, T, L = tors.shape[:3]
        tors = tors.reshape(B*T, L, -1)
        pair = pair.reshape(B*T, L, L, -1)
        pair = torch.cat((pair, rbf_feat), dim=-1)
        pair = self.proj_pair(pair)

        for i_block in range(self.n_block):
            if use_checkpoint:
                tors = tors + checkpoint.checkpoint(create_custom_forward(self.row_attn[i_block]), tors, pair)
            else:
                tors = tors + self.row_attn[i_block](tors, pair)
            tors = tors + self.ff[i_block](tors)
        return self.norm(tors).reshape(B, T, L, -1)

class Templ_emb(nn.Module):
    # Get template embedding
    # Features are
    #   t2d:
    #   - 37 distogram bins + 6 orientations (43)
    #   - Mask (missing/unaligned) (1)
    #   t1d:
    #   - tiled AA sequence (20 standard aa + gap)
    #   - confidence (1)
    #   - contacting or note (1). NB this is added for diffusion model. Used only in complex training examples - 1 signifies that a residue in the non-diffused chain\
    #     i.e. the context, is in contact with the diffused chain.
    #
    #Added extra t1d dimension for contacting or not
    def __init__(self, d_t1d=21+1+1, d_t2d=43+1, d_tor=30, d_pair=128, d_state=32,
                 n_block=2, d_templ=64,
                 n_head=4, d_hidden=16, p_drop=0.25):
        super(Templ_emb, self).__init__()
        # process 2D features
        self.emb = nn.Linear(d_t1d*2+d_t2d, d_templ)
        self.templ_stack = TemplatePairStack(n_block=n_block, d_templ=d_templ, n_head=n_head,
                                             d_hidden=d_hidden, p_drop=p_drop)

        self.attn = Attention(d_pair, d_templ, n_head, d_hidden, d_pair)

        # process torsion angles
        self.emb_t1d = nn.Linear(d_t1d+d_tor, d_templ)
        self.proj_t1d = nn.Linear(d_templ, d_templ)
        #self.tor_stack = TemplateTorsionStack(n_block=n_block, d_templ=d_templ, n_head=n_head,
        #                                      d_hidden=d_hidden, p_drop=p_drop)
        self.attn_tor = Attention(d_state, d_templ, n_head, d_hidden, d_state)

        self.reset_parameter()

    def reset_parameter(self):
        self.emb = init_lecun_normal(self.emb)
        nn.init.zeros_(self.emb.bias)

        nn.init.kaiming_normal_(self.emb_t1d.weight, nonlinearity='relu')
        nn.init.zeros_(self.emb_t1d.bias)

        self.proj_t1d = init_lecun_normal(self.proj_t1d)
        nn.init.zeros_(self.proj_t1d.bias)

    def forward(self, t1d, t2d, alpha_t, xyz_t, pair, state, use_checkpoint=False):
        # Input
        #   - t1d: 1D template info (B, T, L, 23)
        #   - t2d: 2D template info (B, T, L, L, 44)
        B, T, L, _ = t1d.shape

        # Prepare 2D template features
        left = t1d.unsqueeze(3).expand(-1,-1,-1,L,-1)
        right = t1d.unsqueeze(2).expand(-1,-1,L,-1,-1)
        #
        templ = torch.cat((t2d, left, right), -1) # (B, T, L, L, 90)
        templ = self.emb(templ) # Template templures (B, T, L, L, d_templ)
        # process each template features
        xyz_t = xyz_t.reshape(B*T, L, -1, 3)
        rbf_feat = rbf(torch.cdist(xyz_t[:,:,1], xyz_t[:,:,1]))
        templ = self.templ_stack(templ, rbf_feat, use_checkpoint=use_checkpoint) # (B, T, L,L, d_templ)

        # Prepare 1D template torsion angle features
        t1d = torch.cat((t1d, alpha_t), dim=-1) # (B, T, L, 23+30)

        # process each template features
        t1d = self.proj_t1d(F.relu_(self.emb_t1d(t1d)))

        # mixing query state features to template state features
        state = state.reshape(B*L, 1, -1)
        t1d = t1d.permute(0,2,1,3).reshape(B*L, T, -1)
        if use_checkpoint:
            out = checkpoint.checkpoint(create_custom_forward(self.attn_tor), state, t1d, t1d)
            out = out.reshape(B, L, -1)
        else:
            out = self.attn_tor(state, t1d, t1d).reshape(B, L, -1)
        state = state.reshape(B, L, -1)
        state = state + out

        # mixing query pair features to template information (Template pointwise attention)
        pair = pair.reshape(B*L*L, 1, -1)
        templ = templ.permute(0, 2, 3, 1, 4).reshape(B*L*L, T, -1)
        if use_checkpoint:
            out = checkpoint.checkpoint(create_custom_forward(self.attn), pair, templ, templ)
            out = out.reshape(B, L, L, -1)
        else:
            out = self.attn(pair, templ, templ).reshape(B, L, L, -1)
        #
        pair = pair.reshape(B, L, L, -1)
        pair = pair + out

        return pair, state

class Recycling(nn.Module):
    def __init__(self, d_msa=256, d_pair=128, d_state=32):
        super(Recycling, self).__init__()
        self.proj_dist = nn.Linear(36+d_state*2, d_pair)
        self.norm_state = nn.LayerNorm(d_state)
        self.norm_pair = nn.LayerNorm(d_pair)
        self.norm_msa = nn.LayerNorm(d_msa)

        self.reset_parameter()

    def reset_parameter(self):
        self.proj_dist = init_lecun_normal(self.proj_dist)
        nn.init.zeros_(self.proj_dist.bias)

    def forward(self, seq, msa, pair, xyz, state):
        B, L = pair.shape[:2]
        state = self.norm_state(state)
        #
        left = state.unsqueeze(2).expand(-1,-1,L,-1)
        right = state.unsqueeze(1).expand(-1,L,-1,-1)

        # three anchor atoms
        N  = xyz[:,:,0]
        Ca = xyz[:,:,1]
        C  = xyz[:,:,2]

        # recreate Cb given N,Ca,C
        b = Ca - N
        c = C - Ca
        a = torch.cross(b, c, dim=-1)
        Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca

        dist = rbf(torch.cdist(Cb, Cb))
        dist = torch.cat((dist, left, right), dim=-1)
        dist = self.proj_dist(dist)
        pair = dist + self.norm_pair(pair)
        msa = self.norm_msa(msa)
        return msa, pair, state