Thytu
feat: handles qlora (credits: https://huggingface.co/Birchlabs/mosaicml-mpt-7b-chat-qlora)
a677a81
"""A simple, flexible implementation of a GPT model. | |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py | |
""" | |
import math | |
import warnings | |
from typing import Any, List, Optional, Tuple, Union, Protocol, Dict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.checkpoint import checkpoint | |
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast | |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast | |
from transformers.utils import logging | |
from .attention import attn_bias_shape, build_attn_bias, PastKeyValue, MultiheadAttention, MultiQueryAttention | |
from .blocks import MPTBlock, MPTBlockOutput | |
from .norm import NORM_CLASS_REGISTRY | |
from .configuration_mpt import MPTConfig | |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising | |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm | |
from .meta_init_context import init_empty_weights | |
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_ | |
from .is_torch_version import is_torch_version | |
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] | |
logger = logging.get_logger(__name__) | |
class MPTBlockCheckpointedForward(Protocol): | |
def __call__( | |
x: torch.Tensor, | |
past_key_value: Union[PastKeyValue, Tuple, None], | |
attn_bias: Optional[torch.Tensor], | |
attention_mask: Optional[torch.ByteTensor], | |
is_causal: bool, | |
) -> MPTBlockOutput: ... | |
class MPTPreTrainedModel(PreTrainedModel): | |
config_class = MPTConfig | |
base_model_prefix = 'model' | |
_no_split_modules = ['MPTBlock'] | |
supports_gradient_checkpointing = True | |
def _set_gradient_checkpointing(self, module: nn.Module, value=False) -> None: | |
if isinstance(module, MPTModel) or isinstance(module, MultiheadAttention) or isinstance(module, MultiQueryAttention): | |
module.gradient_checkpointing = value | |
class MPTModel(MPTPreTrainedModel): | |
def __init__(self, config: MPTConfig): | |
config._validate_config() | |
super().__init__(config) | |
self.attn_impl = config.attn_config['attn_impl'] | |
self.prefix_lm = config.attn_config['prefix_lm'] | |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] | |
self.alibi = config.attn_config['alibi'] | |
self.alibi_bias_max = config.attn_config['alibi_bias_max'] | |
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): | |
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) | |
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).') | |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] | |
self.embedding_fraction = config.embedding_fraction | |
self.wte = nn.Embedding(config.vocab_size, config.d_model, device=config.init_device) | |
if not self.alibi: | |
self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) | |
self.emb_drop = nn.Dropout(config.emb_pdrop) | |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)]) | |
self.norm_f = norm_class(config.d_model, device=config.init_device) | |
if config.init_device != 'meta': | |
self.apply(self.param_init_fn) | |
self.is_causal = not self.prefix_lm | |
self._attn_bias_initialized = False | |
self.attn_bias = None | |
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id) | |
if config.no_bias: | |
for module in self.modules(): | |
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter): | |
if config.verbose: | |
warnings.warn(f'Removing bias ({module.bias}) from {module}.') | |
module.register_parameter('bias', None) | |
if config.verbose and config.verbose > 2: | |
print(self) | |
if 'verbose' not in self.config.init_config: | |
self.config.init_config['verbose'] = self.config.verbose | |
if self.config.init_config['verbose'] > 1: | |
init_fn_name = self.config.init_config['name'] | |
warnings.warn(f'Using {init_fn_name} initialization.') | |
self.gradient_checkpointing = False | |
def get_input_embeddings(self): | |
return self.wte | |
def set_input_embeddings(self, value): | |
self.wte = value | |
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None): | |
if not self._attn_bias_initialized: | |
if self.attn_bias_shape: | |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) | |
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max) | |
self._attn_bias_initialized = True | |
if self.attn_impl == 'flash': | |
return (self.attn_bias, attention_mask) | |
if self.attn_bias is not None: | |
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) | |
attn_bias = self.attn_bias | |
if self.prefix_lm: | |
assert isinstance(attn_bias, torch.Tensor) | |
assert isinstance(prefix_mask, torch.Tensor) | |
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) | |
if self.attn_uses_sequence_id and sequence_id is not None: | |
assert isinstance(attn_bias, torch.Tensor) | |
attn_bias = self._apply_sequence_id(attn_bias, sequence_id) | |
if attention_mask is not None: | |
s_k = attention_mask.shape[-1] | |
if attn_bias is None: | |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) | |
else: | |
attn_bias = attn_bias[:, :, :, -s_k:] | |
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape: | |
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.') | |
min_val = torch.finfo(attn_bias.dtype).min | |
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val) | |
return (attn_bias, None) | |
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): | |
(s_k, s_q) = attn_bias.shape[-2:] | |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len: | |
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.') | |
seq_len = prefix_mask.shape[-1] | |
if seq_len > self.config.max_seq_len: | |
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}') | |
attn_bias = attn_bias[..., :seq_len, :seq_len] | |
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len) | |
prefix = prefix_mask.view(-1, 1, 1, seq_len) | |
cannot_attend = ~torch.logical_or(causal, prefix.bool()) | |
min_val = torch.finfo(attn_bias.dtype).min | |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) | |
return attn_bias | |
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor): | |
seq_len = sequence_id.shape[-1] | |
if seq_len > self.config.max_seq_len: | |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}') | |
attn_bias = attn_bias[..., :seq_len, :seq_len] | |
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1) | |
min_val = torch.finfo(attn_bias.dtype).min | |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) | |
return attn_bias | |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None): | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
if attention_mask is not None: | |
attention_mask = attention_mask.bool() | |
if prefix_mask is not None: | |
prefix_mask = prefix_mask.bool() | |
if not return_dict: | |
raise NotImplementedError('return_dict False is not implemented yet for MPT') | |
if output_attentions: | |
raise NotImplementedError('output_attentions is not implemented yet for MPT') | |
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training: | |
raise NotImplementedError('MPT does not support training with left padding.') | |
if self.prefix_lm and prefix_mask is None: | |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.') | |
if self.training: | |
if self.attn_uses_sequence_id and sequence_id is None: | |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.') | |
elif self.attn_uses_sequence_id is False and sequence_id is not None: | |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.') | |
S = input_ids.size(1) | |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' | |
tok_emb = self.wte(input_ids) | |
if self.alibi: | |
x = tok_emb | |
else: | |
past_position = 0 | |
if past_key_values is not None: | |
if len(past_key_values) != self.config.n_layers: | |
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).') | |
past_position = past_key_values[0][0].size(1) | |
if S + past_position > self.config.max_seq_len: | |
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.') | |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0) | |
if attention_mask is not None: | |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0) | |
pos_emb = self.wpe(pos) | |
x = tok_emb + pos_emb | |
if self.embedding_fraction == 1: | |
x = self.emb_drop(x) | |
else: | |
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction) | |
assert isinstance(self.emb_drop, nn.Module) | |
x = self.emb_drop(x_shrunk) | |
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id) | |
if use_cache and past_key_values is None: | |
past_key_values = [() for _ in range(self.config.n_layers)] | |
all_hidden_states = () if output_hidden_states else None | |
for (b_idx, block) in enumerate(self.blocks): | |
if output_hidden_states: | |
assert all_hidden_states is not None | |
all_hidden_states = all_hidden_states + (x,) | |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} | |
def create_custom_forward(module: MPTBlock) -> MPTBlockCheckpointedForward: | |
def custom_forward( | |
x: torch.Tensor, | |
past_key_value: Union[PastKeyValue, Tuple, None], | |
attn_bias: Optional[torch.Tensor], | |
attention_mask: Optional[torch.ByteTensor], | |
is_causal: bool | |
): | |
return module.forward( | |
x, | |
past_key_value, | |
attn_bias, | |
attention_mask, | |
is_causal, | |
) | |
return custom_forward | |
block_out: MPTBlockOutput = checkpoint( | |
create_custom_forward(block), | |
x, | |
past_key_value, | |
attn_bias, | |
attention_mask, | |
self.is_causal, | |
**ckpt_kwargs, | |
) | |
else: | |
block_out: MPTBlockOutput = block( | |
x, | |
past_key_value=past_key_value, | |
attn_bias=attn_bias, | |
attention_mask=attention_mask, | |
is_causal=self.is_causal, | |
) | |
x, past_key_value = block_out | |
del block_out | |
if past_key_values is not None: | |
past_key_values[b_idx] = past_key_value | |
x = self.norm_f(x) | |
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states) | |
def param_init_fn(self, module): | |
init_fn_name = self.config.init_config['name'] | |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) | |
def fsdp_wrap_fn(self, module): | |
return isinstance(module, MPTBlock) | |
def activation_checkpointing_fn(self, module): | |
return isinstance(module, MPTBlock) | |
class MPTForCausalLM(MPTPreTrainedModel): | |
def __init__(self, config: MPTConfig): | |
super().__init__(config) | |
if not config.tie_word_embeddings: | |
raise ValueError('MPTForCausalLM only supports tied word embeddings') | |
self.transformer = MPTModel(config) | |
self.logit_scale = None | |
if config.logit_scale is not None: | |
logit_scale = config.logit_scale | |
if isinstance(logit_scale, str): | |
if logit_scale == 'inv_sqrt_d_model': | |
logit_scale = 1 / math.sqrt(config.d_model) | |
else: | |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") | |
self.logit_scale = logit_scale | |
def get_input_embeddings(self): | |
return self.transformer.wte | |
def set_input_embeddings(self, value): | |
self.transformer.wte = value | |
def get_output_embeddings(self): | |
return self.transformer.wte | |
def set_output_embeddings(self, new_embeddings): | |
self.transformer.wte = new_embeddings | |
def set_decoder(self, decoder): | |
self.transformer = decoder | |
def get_decoder(self): | |
return self.transformer | |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, *args, **kwargs): | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache) | |
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight) | |
if self.logit_scale is not None: | |
if self.logit_scale == 0: | |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') | |
logits *= self.logit_scale | |
loss = None | |
if labels is not None: | |
labels = torch.roll(labels, shifts=-1) | |
labels[:, -1] = -100 | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1)) | |
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states) | |
def param_init_fn(self, module): | |
init_fn_name = self.config.init_config['name'] | |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) | |
def fsdp_wrap_fn(self, module): | |
return isinstance(module, MPTBlock) | |
def activation_checkpointing_fn(self, module): | |
return isinstance(module, MPTBlock) | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
if inputs_embeds is not None: | |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet') | |
attention_mask = kwargs['attention_mask'].bool() | |
if attention_mask[:, -1].sum() != attention_mask.shape[0]: | |
raise NotImplementedError('MPT does not support generation with right padding.') | |
if self.transformer.attn_uses_sequence_id and self.training: | |
sequence_id = torch.zeros_like(input_ids[:1]) | |
else: | |
sequence_id = None | |
if past_key_values is not None: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if self.transformer.prefix_lm: | |
prefix_mask = torch.ones_like(attention_mask) | |
if kwargs.get('use_cache') == False: | |
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.') | |
else: | |
prefix_mask = None | |
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)} | |
def _reorder_cache(past_key_values, beam_idx): | |
"""Used by HuggingFace generate when using beam search with kv-caching. | |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 | |
for an example in transformers. | |
""" | |
reordered_past = [] | |
for layer_past in past_key_values: | |
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))] | |
return reordered_past |