MixtureofRecursionwithRouter / custom_tokenizer.py
Girinath11's picture
Update custom_tokenizer.py
02aea9b verified
import os
import json
import pickle
import argparse
import logging
import threading
from collections import Counter, defaultdict, OrderedDict
from typing import List, Dict, Set, Optional, Tuple, Union, Iterator, Any
from dataclasses import dataclass, asdict
from pathlib import Path
import re
import unicodedata
import heapq
from functools import lru_cache
import time
from contextlib import contextmanager
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class TokenizerConfig:
"""Configuration class with validation and serialization support"""
vocab_size: int = 32000
min_freq: int = 2
max_token_length: int = 256
cache_size: int = 10000
chunk_size: int = 10000
# Special tokens
pad_token: str = '<pad>'
unk_token: str = '<unk>'
bos_token: str = '<bos>'
eos_token: str = '<eos>'
# Technical domain specific
enable_code_detection: bool = True
enable_math_detection: bool = True
enable_url_detection: bool = True
def __post_init__(self):
"""Validate configuration parameters"""
if self.vocab_size <= 0:
raise ValueError(f"vocab_size must be positive, got {self.vocab_size}")
if self.min_freq <= 0:
raise ValueError(f"min_freq must be positive, got {self.min_freq}")
if self.max_token_length <= 0:
raise ValueError(f"max_token_length must be positive, got {self.max_token_length}")
if self.cache_size <= 0:
raise ValueError(f"cache_size must be positive, got {self.cache_size}")
logger.info(f"TokenizerConfig validated: vocab_size={self.vocab_size}")
def save(self, path: Union[str, Path]) -> None:
"""Save configuration to JSON file"""
path = Path(path)
with open(path, 'w', encoding='utf-8') as f:
json.dump(asdict(self), f, indent=2, ensure_ascii=False)
logger.info(f"Config saved to {path}")
@classmethod
def load(cls, path: Union[str, Path]) -> 'TokenizerConfig':
"""Load configuration from JSON file"""
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"Config file not found: {path}")
with open(path, 'r', encoding='utf-8') as f:
config_dict = json.load(f)
logger.info(f"Config loaded from {path}")
return cls(**config_dict)
class ThreadSafeLRUCache:
"""Thread-safe LRU cache with size limits"""
def __init__(self, max_size: int = 10000):
self.max_size = max_size
self.cache = OrderedDict()
self.lock = threading.RLock()
def get(self, key: str) -> Optional[List[str]]:
"""Get value from cache"""
with self.lock:
if key in self.cache:
# Move to end (most recently used)
value = self.cache.pop(key)
self.cache[key] = value
return value
return None
def put(self, key: str, value: List[str]) -> None:
"""Add value to cache"""
with self.lock:
if key in self.cache:
self.cache.pop(key)
elif len(self.cache) >= self.max_size:
# Remove least recently used item
self.cache.popitem(last=False)
self.cache[key] = value
def clear(self) -> None:
"""Clear all cache entries"""
with self.lock:
self.cache.clear()
def size(self) -> int:
"""Get current cache size"""
with self.lock:
return len(self.cache)
class EfficientBPE:
"""Efficient BPE implementation using priority queues"""
def __init__(self):
self.merges: List[Tuple[str, str]] = []
self.merge_ranks: Dict[Tuple[str, str], int] = {}
def train(self, word_counts: Dict[str, int], num_merges: int) -> None:
"""Train BPE using efficient algorithm with priority queue"""
logger.info(f"Training BPE with {num_merges} merges")
# Convert words to character sequences
vocab = defaultdict(int)
for word, count in word_counts.items():
vocab[tuple(word)] += count
# Get all possible pairs and their frequencies
def get_pairs(vocab_dict):
pairs = defaultdict(int)
for word, freq in vocab_dict.items():
if len(word) < 2:
continue
for i in range(len(word) - 1):
pair = (word[i], word[i + 1])
pairs[pair] += freq
return pairs
for i in range(num_merges):
if i % 1000 == 0:
logger.info(f"BPE merge progress: {i}/{num_merges}")
pairs = get_pairs(vocab)
if not pairs:
logger.warning(f"No more pairs available at merge {i}")
break
# Get most frequent pair
best_pair = max(pairs.items(), key=lambda x: x[1])[0]
# Merge the best pair
new_vocab = {}
bigram = best_pair
for word, freq in vocab.items():
new_word = []
i = 0
while i < len(word):
if i < len(word) - 1 and (word[i], word[i + 1]) == bigram:
new_word.append(word[i] + word[i + 1])
i += 2
else:
new_word.append(word[i])
i += 1
new_vocab[tuple(new_word)] = freq
vocab = new_vocab
self.merges.append(best_pair)
self.merge_ranks[best_pair] = len(self.merges) - 1
logger.info(f"BPE training completed with {len(self.merges)} merges")
def apply(self, word: str) -> List[str]:
"""Apply BPE merges to a word efficiently"""
if len(word) <= 1:
return list(word)
# Start with character-level tokens
word_tokens = list(word)
# Apply merges in order
for merge_pair in self.merges:
if len(word_tokens) == 1:
break
new_tokens = []
i = 0
while i < len(word_tokens):
if (i < len(word_tokens) - 1 and
word_tokens[i] == merge_pair[0] and
word_tokens[i + 1] == merge_pair[1]):
new_tokens.append(merge_pair[0] + merge_pair[1])
i += 2
else:
new_tokens.append(word_tokens[i])
i += 1
word_tokens = new_tokens
return word_tokens
class TechnicalTokenizer:
"""
Production-quality tokenizer for technical content with:
- Efficient BPE implementation
- Thread-safe caching
- Memory-efficient streaming
- Comprehensive error handling
- Proper logging and monitoring
"""
def __init__(self, config: Optional[TokenizerConfig] = None):
self.config = config or TokenizerConfig()
# Core components
self.vocab: Dict[str, int] = {}
self.id_to_token: Dict[int, str] = {}
self.token_frequencies: Counter = Counter()
self.bpe = EfficientBPE()
# Thread-safe cache
self.cache = ThreadSafeLRUCache(self.config.cache_size)
# Special tokens mapping
self.special_tokens = {
self.config.pad_token: 0,
self.config.unk_token: 1,
self.config.bos_token: 2,
self.config.eos_token: 3,
'<system>': 4,
'<user>': 5,
'<assistant>': 6,
'<|endoftext|>': 7,
'<|newline|>': 8,
'<|tab|>': 9,
'<|code|>': 10,
'<|/code|>': 11,
'<|math|>': 12,
'<|/math|>': 13,
'<URL>': 14,
'<EMAIL>': 15,
'<NUMBER>': 16
}
# Initialize vocabulary with special tokens
self._initialize_vocab()
# Compile regex patterns for efficiency
self._compile_patterns()
# Technical terms for priority processing
self.technical_terms = self._load_technical_terms()
logger.info(f"TechnicalTokenizer initialized with vocab_size={self.config.vocab_size}")
def _initialize_vocab(self) -> None:
"""Initialize vocabulary with special tokens"""
self.vocab = self.special_tokens.copy()
self.id_to_token = {v: k for k, v in self.special_tokens.items()}
def _compile_patterns(self) -> None:
"""Compile regex patterns for efficient text processing"""
patterns = []
if self.config.enable_code_detection:
patterns.extend([
r'```[\s\S]*?```', # Code blocks
r'`[^`\n]+`', # Inline code
])
if self.config.enable_url_detection:
patterns.append(r'https?://[^\s<>"{}|\\^`[\]]+')
patterns.extend([
r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', # Email
r'<[^>]+>', # Special tokens
r'\b\d+\.?\d*\b', # Numbers
r'\b\w+(?:\'\w+)?\b', # Words with contractions
r'[^\w\s]', # Punctuation
])
self.tokenizer_pattern = re.compile('|'.join(f'({pattern})' for pattern in patterns))
# Additional patterns for normalization
self.newline_pattern = re.compile(r'\r\n|\r')
self.tab_pattern = re.compile(r'\t')
self.multiple_space_pattern = re.compile(r'\s+')
def _load_technical_terms(self) -> Set[str]:
"""Load technical terms for priority processing"""
return {
# Programming
'function', 'variable', 'array', 'object', 'class', 'method',
'parameter', 'return', 'import', 'export', 'async', 'await',
'promise', 'callback', 'algorithm', 'datatype', 'boolean',
# Languages
'python', 'javascript', 'java', 'cpp', 'rust', 'go',
'html', 'css', 'sql', 'typescript', 'kotlin', 'swift',
# Web/API
'api', 'rest', 'graphql', 'json', 'xml', 'http', 'https',
'endpoint', 'request', 'response', 'authentication',
# Math/ML
'neural', 'network', 'model', 'training', 'validation',
'accuracy', 'precision', 'recall', 'loss', 'gradient',
'derivative', 'integral', 'matrix', 'vector', 'tensor',
'transformer', 'attention', 'embedding', 'tokenization',
# Infrastructure
'docker', 'kubernetes', 'microservice', 'database',
'server', 'client', 'deployment', 'scalability'
}
@contextmanager
def _error_context(self, operation: str):
"""Context manager for consistent error handling"""
try:
yield
except Exception as e:
logger.error(f"Error in {operation}: {str(e)}")
raise
def normalize_text(self, text: str) -> str:
"""Normalize text with proper error handling"""
if not isinstance(text, str):
raise TypeError(f"Expected str, got {type(text)}")
with self._error_context("text normalization"):
# Basic normalization
text = self.newline_pattern.sub('\n', text)
text = self.tab_pattern.sub('<|tab|>', text)
text = unicodedata.normalize('NFKC', text)
# Handle special token markers
text = re.sub(r'<\|system\|>', ' <system> ', text)
text = re.sub(r'<\|user\|>', ' <user> ', text)
text = re.sub(r'<\|assistant\|>', ' <assistant> ', text)
text = re.sub(r'<\|endoftext\|>', ' <|endoftext|> ', text)
return text.strip()
def pre_tokenize(self, text: str) -> List[str]:
"""Pre-tokenize text into words and special tokens"""
if not text:
return []
with self._error_context("pre-tokenization"):
normalized_text = self.normalize_text(text)
# Find all tokens using compiled pattern
matches = self.tokenizer_pattern.findall(normalized_text)
# Flatten the match groups and filter empty strings
tokens = []
for match_groups in matches:
for group in match_groups:
if group:
tokens.append(group)
break
return [token.strip() for token in tokens if token.strip()]
def train_from_iterator(self, text_iterator: Iterator[str],
total_texts: Optional[int] = None) -> None:
"""
Train tokenizer from text iterator for memory efficiency
Args:
text_iterator: Iterator yielding text strings
total_texts: Optional total count for progress tracking
"""
logger.info("Starting BPE training from iterator")
start_time = time.time()
word_counts = Counter()
processed_texts = 0
# Process texts in chunks to manage memory
current_chunk = []
for text in text_iterator:
current_chunk.append(text)
processed_texts += 1
if len(current_chunk) >= self.config.chunk_size:
self._process_text_chunk(current_chunk, word_counts)
current_chunk.clear()
if processed_texts % 10000 == 0:
elapsed = time.time() - start_time
logger.info(f"Processed {processed_texts} texts in {elapsed:.1f}s")
# Process remaining texts
if current_chunk:
self._process_text_chunk(current_chunk, word_counts)
logger.info(f"Pre-processing completed: {len(word_counts)} unique words")
# Filter by frequency and boost technical terms
filtered_words = {}
for word, count in word_counts.items():
if count >= self.config.min_freq:
# Boost technical terms
if word.lower() in self.technical_terms:
count *= 5
filtered_words[word] = count
logger.info(f"After filtering: {len(filtered_words)} words")
# Build character vocabulary
all_chars = set()
for word in filtered_words:
all_chars.update(word)
# Add characters to vocabulary
for char in sorted(all_chars):
if char not in self.vocab:
token_id = len(self.vocab)
self.vocab[char] = token_id
self.id_to_token[token_id] = char
# Calculate number of merges needed
current_vocab_size = len(self.vocab)
target_vocab_size = self.config.vocab_size
num_merges = target_vocab_size - current_vocab_size
if num_merges > 0:
# Train BPE
self.bpe.train(filtered_words, num_merges)
# Add merged tokens to vocabulary
for merge_pair in self.bpe.merges:
merged_token = merge_pair[0] + merge_pair[1]
if merged_token not in self.vocab:
token_id = len(self.vocab)
self.vocab[merged_token] = token_id
self.id_to_token[token_id] = merged_token
# Update token frequencies
for word, count in filtered_words.items():
tokens = self.apply_bpe(word)
for token in tokens:
self.token_frequencies[token] += count
training_time = time.time() - start_time
logger.info(f"Training completed in {training_time:.1f}s")
logger.info(f"Final vocabulary size: {len(self.vocab)}")
def _process_text_chunk(self, texts: List[str], word_counts: Counter) -> None:
"""Process a chunk of texts and update word counts"""
for text in texts:
try:
tokens = self.pre_tokenize(text)
for token in tokens:
if len(token) <= self.config.max_token_length:
word_counts[token] += 1
except Exception as e:
logger.warning(f"Error processing text chunk: {e}")
continue
def apply_bpe(self, word: str) -> List[str]:
"""Apply BPE to a word with caching"""
if not word:
return []
# Check cache first
cached_result = self.cache.get(word)
if cached_result is not None:
return cached_result
# Apply BPE
tokens = self.bpe.apply(word)
# Cache the result
self.cache.put(word, tokens)
return tokens
def tokenize(self, text: str) -> List[str]:
"""Tokenize text into subword tokens"""
if not text:
return []
with self._error_context("tokenization"):
pre_tokens = self.pre_tokenize(text)
final_tokens = []
for token in pre_tokens:
if token in self.special_tokens or token in self.vocab:
final_tokens.append(token)
else:
bpe_tokens = self.apply_bpe(token)
final_tokens.extend(bpe_tokens)
return final_tokens
def encode(self, text: str, add_special_tokens: bool = False) -> List[int]:
"""Encode text to token IDs"""
if not isinstance(text, str):
raise TypeError(f"Expected str, got {type(text)}")
tokens = self.tokenize(text)
if add_special_tokens:
tokens = [self.config.bos_token] + tokens + [self.config.eos_token]
ids = []
unk_id = self.vocab[self.config.unk_token]
for token in tokens:
token_id = self.vocab.get(token, unk_id)
ids.append(token_id)
return ids
def decode(self, ids: List[int], skip_special_tokens: bool = False) -> str:
"""Decode token IDs to text"""
if not isinstance(ids, (list, tuple)):
raise TypeError(f"Expected list or tuple, got {type(ids)}")
tokens = []
for token_id in ids:
if not isinstance(token_id, int):
raise TypeError(f"Expected int token ID, got {type(token_id)}")
if token_id not in self.id_to_token:
logger.warning(f"Unknown token ID: {token_id}")
continue
token = self.id_to_token[token_id]
if skip_special_tokens and token in self.special_tokens:
continue
tokens.append(token)
# Join tokens and clean up
text = ''.join(tokens)
text = text.replace('<|tab|>', '\t')
text = text.replace('<|newline|>', '\n')
return text
def get_vocab_size(self) -> int:
"""Get vocabulary size"""
return len(self.vocab)
def get_vocab(self) -> Dict[str, int]:
"""Get vocabulary dictionary (copy for safety)"""
return self.vocab.copy()
def get_cache_info(self) -> Dict[str, int]:
"""Get cache statistics"""
return {
'size': self.cache.size(),
'max_size': self.config.cache_size,
'hit_rate': getattr(self.cache, 'hit_rate', 0)
}
def save(self, save_dir: Union[str, Path]) -> None:
"""Save tokenizer with validation"""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
logger.info(f"Saving tokenizer to {save_dir}")
try:
# Save configuration
self.config.save(save_dir / 'config.json')
# Save vocabulary
with open(save_dir / 'vocab.json', 'w', encoding='utf-8') as f:
json.dump(self.vocab, f, indent=2, ensure_ascii=False)
# Save BPE merges
with open(save_dir / 'merges.txt', 'w', encoding='utf-8') as f:
for merge in self.bpe.merges:
f.write(f"{merge[0]} {merge[1]}\n")
# Save token frequencies
with open(save_dir / 'frequencies.pkl', 'wb') as f:
pickle.dump(dict(self.token_frequencies), f)
# Save metadata
metadata = {
'version': '2.0',
'vocab_size': len(self.vocab),
'num_merges': len(self.bpe.merges),
'special_tokens': self.special_tokens
}
with open(save_dir / 'metadata.json', 'w', encoding='utf-8') as f:
json.dump(metadata, f, indent=2)
logger.info("Tokenizer saved successfully")
except Exception as e:
logger.error(f"Error saving tokenizer: {e}")
raise
@classmethod
def load(cls, save_dir: Union[str, Path]) -> 'TechnicalTokenizer':
"""Load tokenizer from directory"""
save_dir = Path(save_dir)
if not save_dir.exists():
raise FileNotFoundError(f"Tokenizer directory not found: {save_dir}")
logger.info(f"Loading tokenizer from {save_dir}")
try:
# Load configuration
config = TokenizerConfig.load(save_dir / 'config.json')
# Create tokenizer instance
tokenizer = cls(config)
# Load vocabulary
with open(save_dir / 'vocab.json', 'r', encoding='utf-8') as f:
tokenizer.vocab = json.load(f)
tokenizer.id_to_token = {v: k for k, v in tokenizer.vocab.items()}
# Load BPE merges
merges_file = save_dir / 'merges.txt'
if merges_file.exists():
with open(merges_file, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
parts = line.split()
if len(parts) == 2:
tokenizer.bpe.merges.append(tuple(parts))
# Rebuild merge ranks
tokenizer.bpe.merge_ranks = {
merge: i for i, merge in enumerate(tokenizer.bpe.merges)
}
# Load token frequencies
freq_file = save_dir / 'frequencies.pkl'
if freq_file.exists():
with open(freq_file, 'rb') as f:
freq_dict = pickle.load(f)
tokenizer.token_frequencies = Counter(freq_dict)
logger.info(f"Tokenizer loaded successfully")
logger.info(f"Vocabulary size: {len(tokenizer.vocab)}")
logger.info(f"Number of BPE merges: {len(tokenizer.bpe.merges)}")
return tokenizer
except Exception as e:
logger.error(f"Error loading tokenizer: {e}")
raise
def create_text_iterator(file_paths: List[Union[str, Path]],
max_texts: Optional[int] = None) -> Iterator[str]:
"""Create memory-efficient text iterator from multiple files"""
processed_count = 0
for file_path in file_paths:
file_path = Path(file_path)
if not file_path.exists():
logger.warning(f"File not found: {file_path}")
continue
logger.info(f"Processing file: {file_path}")
try:
if file_path.suffix == '.jsonl':
with open(file_path, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f, 1):
try:
data = json.loads(line.strip())
if 'messages' in data:
# Conversation format
texts = []
for msg in data['messages']:
content = msg.get('content', '').strip()
if content:
texts.append(content)
if texts:
yield ' '.join(texts)
processed_count += 1
elif 'text' in data:
# Simple text format
text = data['text'].strip()
if text:
yield text
processed_count += 1
if max_texts and processed_count >= max_texts:
return
except json.JSONDecodeError as e:
logger.warning(f"JSON decode error at line {line_num} in {file_path}: {e}")
continue
else:
# Plain text file
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Split by double newlines or other separators
chunks = re.split(r'\n\s*\n', content)
for chunk in chunks:
chunk = chunk.strip()
if chunk and len(chunk) > 50: # Skip very short chunks
yield chunk
processed_count += 1
if max_texts and processed_count >= max_texts:
return
except Exception as e:
logger.error(f"Error processing file {file_path}: {e}")
continue
logger.info(f"Total texts processed: {processed_count}")
def train_tokenizer(input_files: List[Union[str, Path]],
output_dir: Union[str, Path],
config: Optional[TokenizerConfig] = None,
max_texts: Optional[int] = None) -> TechnicalTokenizer:
"""Train a new tokenizer from input files"""
config = config or TokenizerConfig()
tokenizer = TechnicalTokenizer(config)
# Create text iterator
text_iter = create_text_iterator(input_files, max_texts)
# Train tokenizer
tokenizer.train_from_iterator(text_iter)
# Save tokenizer
tokenizer.save(output_dir)
return tokenizer
def main():
"""Main CLI interface"""
parser = argparse.ArgumentParser(
description="Production-Quality Technical Tokenizer",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# Input/Output
parser.add_argument('--input_files', nargs='+',
help='Input files for training')
parser.add_argument('--output_dir', default='tokenizer_output',
help='Output directory for tokenizer')
parser.add_argument('--load_from',
help='Load existing tokenizer from directory')
# Training parameters
parser.add_argument('--vocab_size', type=int, default=32000,
help='Target vocabulary size')
parser.add_argument('--min_freq', type=int, default=2,
help='Minimum token frequency')
parser.add_argument('--max_texts', type=int,
help='Maximum number of texts to process')
parser.add_argument('--cache_size', type=int, default=10000,
help='BPE cache size')
# Testing
parser.add_argument('--test_text',
help='Test text for tokenization analysis')
parser.add_argument('--benchmark', action='store_true',
help='Run performance benchmarks')
# Logging
parser.add_argument('--verbose', action='store_true',
help='Enable verbose logging')
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
try:
if args.load_from:
# Load existing tokenizer
tokenizer = TechnicalTokenizer.load(args.load_from)
if args.test_text:
print(f"\nTokenization Analysis:")
print(f"Text: {args.test_text}")
tokens = tokenizer.tokenize(args.test_text)
ids = tokenizer.encode(args.test_text)
decoded = tokenizer.decode(ids)
print(f"Tokens: {tokens}")
print(f"Token IDs: {ids}")
print(f"Decoded: {decoded}")
print(f"Token count: {len(tokens)}")
print(f"Compression ratio: {len(args.test_text.split()) / len(tokens):.2f}")
if args.benchmark:
run_benchmark(tokenizer)
else:
# Train new tokenizer
if not args.input_files:
parser.error("--input_files required when not loading existing tokenizer")
# Create configuration
config = TokenizerConfig(
vocab_size=args.vocab_size,
min_freq=args.min_freq,
cache_size=args.cache_size
)
# Train tokenizer
tokenizer = train_tokenizer(
input_files=args.input_files,
output_dir=args.output_dir,
config=config,
max_texts=args.max_texts
)
# Test on sample texts
test_texts = [
"Hello, how can I help you with your Python programming question?",
"The neural network architecture uses attention mechanisms for better performance.",
"```python\ndef fibonacci(n):\n if n <= 1:\n return n\n return fibonacci(n-1) + fibonacci(n-2)\n```",
"The derivative of x² is 2x, and the integral is (x³)/3 + C."
]
print("\nTokenization Analysis on Sample Texts:")
print("=" * 50)
for i, text in enumerate(test_texts, 1):
print(f"\nTest {i}:")
print(f"Text: {text}")
tokens = tokenizer.tokenize(text)
ids = tokenizer.encode(text)
print(f"Tokens ({len(tokens)}): {tokens}")
print(f"Token IDs: {ids}")
word_count = len(text.split())
compression_ratio = word_count / len(tokens) if tokens else 0
print(f"Compression ratio: {compression_ratio:.2f}")
print(f"\nTokenizer training completed!")
print(f"Vocabulary size: {tokenizer.get_vocab_size()}")
print(f"Cache info: {tokenizer.get_cache_info()}")
except Exception as e:
logger.error(f"Error in main: {e}")
if args.verbose:
import traceback
traceback.print_exc()
return 1
return 0
def run_benchmark(tokenizer: TechnicalTokenizer) -> None:
"""Run performance benchmarks on the tokenizer"""
import time
import random
import string
print("\nRunning Performance Benchmarks...")
print("=" * 50)
# Generate test data
test_texts = []
# Short texts
for _ in range(1000):
length = random.randint(10, 50)
text = ' '.join(''.join(random.choices(string.ascii_lowercase, k=random.randint(3, 10)))
for _ in range(length))
test_texts.append(text)
# Medium texts
for _ in range(100):
length = random.randint(100, 500)
text = ' '.join(''.join(random.choices(string.ascii_lowercase, k=random.randint(3, 10)))
for _ in range(length))
test_texts.append(text)
# Long texts
for _ in range(10):
length = random.randint(1000, 5000)
text = ' '.join(''.join(random.choices(string.ascii_lowercase, k=random.randint(3, 10)))
for _ in range(length))
test_texts.append(text)
# Benchmark tokenization
print("Benchmarking tokenization...")
start_time = time.time()
total_tokens = 0
for text in test_texts:
tokens = tokenizer.tokenize(text)
total_tokens += len(tokens)
tokenization_time = time.time() - start_time
# Benchmark encoding
print("Benchmarking encoding...")
start_time = time.time()
all_ids = []
for text in test_texts:
ids = tokenizer.encode(text)
all_ids.append(ids)
encoding_time = time.time() - start_time
# Benchmark decoding
print("Benchmarking decoding...")
start_time = time.time()
for ids in all_ids:
decoded = tokenizer.decode(ids)
decoding_time = time.time() - start_time
# Print results
print(f"\nBenchmark Results:")
print(f"Texts processed: {len(test_texts)}")
print(f"Total tokens: {total_tokens:,}")
print(f"Tokenization time: {tokenization_time:.3f}s")
print(f"Encoding time: {encoding_time:.3f}s")
print(f"Decoding time: {decoding_time:.3f}s")
print(f"Tokenization speed: {total_tokens/tokenization_time:.0f} tokens/sec")
print(f"Cache info: {tokenizer.get_cache_info()}")
class TokenizerTester:
"""Comprehensive testing utilities for the tokenizer"""
def __init__(self, tokenizer: TechnicalTokenizer):
self.tokenizer = tokenizer
def test_roundtrip_consistency(self, texts: List[str]) -> Dict[str, Any]:
"""Test encode/decode roundtrip consistency"""
results = {
'total_tests': len(texts),
'passed': 0,
'failed': 0,
'failures': []
}
for i, text in enumerate(texts):
try:
# Encode then decode
ids = self.tokenizer.encode(text, add_special_tokens=False)
decoded = self.tokenizer.decode(ids, skip_special_tokens=True)
# Check if roundtrip preserves meaning (not exact match due to BPE)
original_tokens = self.tokenizer.tokenize(text)
decoded_tokens = self.tokenizer.tokenize(decoded)
if len(original_tokens) == len(decoded_tokens):
results['passed'] += 1
else:
results['failed'] += 1
results['failures'].append({
'index': i,
'original': text,
'decoded': decoded,
'original_tokens': len(original_tokens),
'decoded_tokens': len(decoded_tokens)
})
except Exception as e:
results['failed'] += 1
results['failures'].append({
'index': i,
'error': str(e),
'text': text
})
return results
def test_special_tokens(self) -> Dict[str, bool]:
"""Test special token handling"""
results = {}
for token_name, token_id in self.tokenizer.special_tokens.items():
try:
# Test encoding
ids = self.tokenizer.encode(token_name, add_special_tokens=False)
expected_id = self.tokenizer.vocab.get(token_name)
# Test decoding
decoded = self.tokenizer.decode([token_id])
results[token_name] = (
expected_id in ids and
token_name in decoded
)
except Exception:
results[token_name] = False
return results
def test_edge_cases(self) -> Dict[str, bool]:
"""Test edge cases and error conditions"""
tests = {
'empty_string': True,
'whitespace_only': True,
'very_long_text': True,
'unicode_text': True,
'special_chars': True
}
try:
# Empty string
result = self.tokenizer.encode("")
tests['empty_string'] = isinstance(result, list)
except Exception:
tests['empty_string'] = False
try:
# Whitespace only
result = self.tokenizer.encode(" \n\t ")
tests['whitespace_only'] = isinstance(result, list)
except Exception:
tests['whitespace_only'] = False
try:
# Very long text
long_text = "test " * 10000
result = self.tokenizer.encode(long_text)
tests['very_long_text'] = isinstance(result, list)
except Exception:
tests['very_long_text'] = False
try:
# Unicode text
unicode_text = "Hello 世界 🌍 café naïve"
result = self.tokenizer.encode(unicode_text)
tests['unicode_text'] = isinstance(result, list)
except Exception:
tests['unicode_text'] = False
try:
# Special characters
special_text = "!@#$%^&*()_+-=[]{}|;:'\",.<>?/~`"
result = self.tokenizer.encode(special_text)
tests['special_chars'] = isinstance(result, list)
except Exception:
tests['special_chars'] = False
return tests
if __name__ == "__main__":
exit(main())