metadata
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Gille/StrangeMerges_46-7B-dare_ties
- AurelPx/Percival_01-7b-slerp
- Gille/StrangeMerges_47-7B-dare_ties
base_model:
- Gille/StrangeMerges_46-7B-dare_ties
- AurelPx/Percival_01-7b-slerp
- Gille/StrangeMerges_47-7B-dare_ties
StrangeMerges_48-7B-dare_ties
StrangeMerges_48-7B-dare_ties is a merge of the following models using LazyMergekit:
- Gille/StrangeMerges_46-7B-dare_ties
- AurelPx/Percival_01-7b-slerp
- Gille/StrangeMerges_47-7B-dare_ties
🧩 Configuration
models:
- model: Gille/StrangeMerges_46-7B-dare_ties
parameters:
weight: 0.4
density: 0.53
- model: AurelPx/Percival_01-7b-slerp
parameters:
weight: 0.4
density: 0.53
- model: Gille/StrangeMerges_47-7B-dare_ties
parameters:
weight: 0.2
density: 0.53
base_model: Locutusque/Hercules-4.0-Mistral-v0.2-7B
merge_method: dare_ties
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_48-7B-dare_ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])