File size: 2,739 Bytes
0fdcda1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
[paths]
train = "corpus/train.spacy"
dev = "corpus/dev.spacy"
raw = null
init_tok2vec = null
vectors = null
[system]
seed = 0
gpu_allocator = null
[nlp]
lang = "en"
pipeline = ["transformer","textcat"]
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
batch_size = 1000
[components]
[components.textcat]
factory = "textcat_multilabel"
threshold = 0.5
[components.textcat.model]
@architectures = "spacy.TextCatCNN.v1"
exclusive_classes = false
nO = null
[components.textcat.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"
[components.transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}
[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v1"
name = "Musixmatch/umberto-commoncrawl-cased-v1"
[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96
[components.transformer.model.tokenizer_config]
use_fast = true
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
gold_preproc = ${corpora.train.gold_preproc}
max_length = ${corpora.train.max_length}
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths:train}
gold_preproc = false
max_length = 500
limit = 0
augmenter = null
[training]
train_corpus = "corpora.train"
dev_corpus = "corpora.dev"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
patience = 5000
eval_frequency = 400
dropout = 0.1
max_epochs = 15
max_steps = 0
accumulate_gradient = 3
frozen_components = []
before_to_disk = null
[training.batcher]
@batchers = "spacy.batch_by_sequence.v1"
size = 256
get_length = null
[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
eps = 0.00000001
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005
[training.score_weights]
cats_score = 0.5
cats_score_desc = null
cats_micro_p = null
cats_micro_r = null
cats_micro_f = null
cats_macro_p = null
cats_macro_r = null
cats_macro_f = 0.5
cats_macro_auc = null
cats_f_per_type = null
cats_macro_auc_per_type = null
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.tokenizer] |