File size: 4,323 Bytes
b0b8f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
base_model: bert-base-chinese
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: Misinformation-Covid-LowLearningRatebert-base-chinese
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Misinformation-Covid-LowLearningRatebert-base-chinese

This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5999
- F1: 0.2128

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6765        | 1.0   | 189  | 0.6464          | 0.0    |
| 0.6809        | 2.0   | 378  | 0.6449          | 0.0    |
| 0.6734        | 3.0   | 567  | 0.6651          | 0.0    |
| 0.6827        | 4.0   | 756  | 0.6684          | 0.0    |
| 0.7095        | 5.0   | 945  | 0.6532          | 0.0    |
| 0.7           | 6.0   | 1134 | 0.6646          | 0.0    |
| 0.7192        | 7.0   | 1323 | 0.6497          | 0.0    |
| 0.6877        | 8.0   | 1512 | 0.6446          | 0.0    |
| 0.6831        | 9.0   | 1701 | 0.6305          | 0.0571 |
| 0.6633        | 10.0  | 1890 | 0.6203          | 0.1622 |
| 0.6668        | 11.0  | 2079 | 0.6219          | 0.1622 |
| 0.6482        | 12.0  | 2268 | 0.6242          | 0.1111 |
| 0.6543        | 13.0  | 2457 | 0.6117          | 0.15   |
| 0.6492        | 14.0  | 2646 | 0.6236          | 0.1622 |
| 0.6624        | 15.0  | 2835 | 0.6233          | 0.1622 |
| 0.6525        | 16.0  | 3024 | 0.6134          | 0.15   |
| 0.6466        | 17.0  | 3213 | 0.6118          | 0.1905 |
| 0.6406        | 18.0  | 3402 | 0.6191          | 0.15   |
| 0.6479        | 19.0  | 3591 | 0.6216          | 0.1538 |
| 0.6488        | 20.0  | 3780 | 0.6076          | 0.2128 |
| 0.6352        | 21.0  | 3969 | 0.6062          | 0.2174 |
| 0.6213        | 22.0  | 4158 | 0.6042          | 0.2174 |
| 0.6285        | 23.0  | 4347 | 0.6100          | 0.2326 |
| 0.6298        | 24.0  | 4536 | 0.6076          | 0.2128 |
| 0.6473        | 25.0  | 4725 | 0.6058          | 0.2128 |
| 0.5972        | 26.0  | 4914 | 0.6065          | 0.2222 |
| 0.6118        | 27.0  | 5103 | 0.6001          | 0.25   |
| 0.6116        | 28.0  | 5292 | 0.6059          | 0.2128 |
| 0.6289        | 29.0  | 5481 | 0.5992          | 0.25   |
| 0.5932        | 30.0  | 5670 | 0.6006          | 0.25   |
| 0.6076        | 31.0  | 5859 | 0.6009          | 0.2128 |
| 0.6033        | 32.0  | 6048 | 0.6082          | 0.2128 |
| 0.6235        | 33.0  | 6237 | 0.6023          | 0.2128 |
| 0.6237        | 34.0  | 6426 | 0.6079          | 0.2222 |
| 0.6176        | 35.0  | 6615 | 0.6081          | 0.2222 |
| 0.646         | 36.0  | 6804 | 0.6019          | 0.2128 |
| 0.6233        | 37.0  | 6993 | 0.6020          | 0.2128 |
| 0.6004        | 38.0  | 7182 | 0.6040          | 0.2174 |
| 0.6159        | 39.0  | 7371 | 0.5963          | 0.2449 |
| 0.5747        | 40.0  | 7560 | 0.6011          | 0.2174 |
| 0.6216        | 41.0  | 7749 | 0.5954          | 0.2449 |
| 0.5893        | 42.0  | 7938 | 0.5974          | 0.2083 |
| 0.5887        | 43.0  | 8127 | 0.5993          | 0.2128 |
| 0.5756        | 44.0  | 8316 | 0.5993          | 0.2128 |
| 0.6204        | 45.0  | 8505 | 0.5982          | 0.2083 |
| 0.584         | 46.0  | 8694 | 0.5966          | 0.2449 |
| 0.5809        | 47.0  | 8883 | 0.5989          | 0.2083 |
| 0.5873        | 48.0  | 9072 | 0.6002          | 0.2128 |
| 0.5999        | 49.0  | 9261 | 0.6001          | 0.2128 |
| 0.5888        | 50.0  | 9450 | 0.5999          | 0.2128 |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.2
- Datasets 2.12.0
- Tokenizers 0.13.3