File size: 14,978 Bytes
f21ca04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import mesh_tensorflow.optimize
import mesh_tensorflow.transformer.dataset as mesh_tensorflow2
import mesh_tensorflow.transformer.learning_rate_schedules as mesh_tensorflow3
import mesh_tensorflow.transformer.t2t_vocabulary as mesh_tensorflow4
import mesh_tensorflow.transformer.transformer as mesh_tensorflow5
import mesh_tensorflow.transformer.transformer_layers as mesh_tensorflow6
import mesh_tensorflow.transformer.utils as mesh_tensorflow7
import t5.models.mesh_transformer
# Macros:
# ==============================================================================
d_ff = 3072
d_kv = 64
d_model = 768
dropout_rate = 0.0
inputs_length = 512
mean_noise_span_length = 3.0
MIXTURE_NAME = 'gc4_corpus'
noise_density = 0.15
num_heads = 12
num_layers = 36
# Parameters for adafactor_decay_rate_pow:
# ==============================================================================
adafactor_decay_rate_pow.offset = 0
# Parameters for AdafactorOptimizer:
# ==============================================================================
AdafactorOptimizer.beta1 = 0.0
AdafactorOptimizer.clipping_threshold = 1.0
AdafactorOptimizer.decay_rate = None
AdafactorOptimizer.epsilon1 = 1e-30
AdafactorOptimizer.epsilon2 = 0.001
AdafactorOptimizer.factored = True
AdafactorOptimizer.min_dim_size_to_factor = 128
AdafactorOptimizer.multiply_by_parameter_scale = True
# Parameters for Bitransformer:
# ==============================================================================
Bitransformer.shared_embedding = True
# Parameters for denoise:
# ==============================================================================
denoise.passthrough_feature_keys = None
# Parameters for decoder/DenseReluDense:
# ==============================================================================
decoder/DenseReluDense.activation = 'relu'
decoder/DenseReluDense.dropout_rate = %dropout_rate
decoder/DenseReluDense.hidden_size = %d_ff
decoder/DenseReluDense.use_bias = False
# Parameters for encoder/DenseReluDense:
# ==============================================================================
encoder/DenseReluDense.activation = 'relu'
encoder/DenseReluDense.dropout_rate = %dropout_rate
encoder/DenseReluDense.hidden_size = %d_ff
encoder/DenseReluDense.use_bias = False
# Parameters for enc_dec_attention:
# ==============================================================================
# None.
# Parameters for enc_dec_attention_bias:
# ==============================================================================
# None.
# Parameters for decoder/EncDecAttention:
# ==============================================================================
decoder/EncDecAttention.relative_attention_type = None
# Parameters for get_variable_dtype:
# ==============================================================================
get_variable_dtype.activation_dtype = 'bfloat16'
# Parameters for get_vocab_embedding_cls:
# ==============================================================================
# None.
# Parameters for get_vocabulary:
# ==============================================================================
get_vocabulary.mixture_or_task_name = %MIXTURE_NAME
# Parameters for decoder/LayerStack:
# ==============================================================================
decoder/LayerStack.dropout_rate = None
decoder/LayerStack.norm_epsilon = None
decoder/LayerStack.recompute_grads = False
decoder/LayerStack.sublayers_final = \
[@transformer.sublayer_rms_norm, @transformer.sublayer_dropout]
decoder/LayerStack.sublayers_initial = [@transformer.sublayer_dropout]
decoder/LayerStack.sublayers_per_layer = \
[@transformer.sublayer_rms_norm,
@transformer.sublayer_call_layer,
@transformer.sublayer_dropout,
@transformer.sublayer_residual]
# Parameters for encoder/LayerStack:
# ==============================================================================
encoder/LayerStack.dropout_rate = None
encoder/LayerStack.norm_epsilon = None
encoder/LayerStack.recompute_grads = False
encoder/LayerStack.sublayers_final = \
[@transformer.sublayer_rms_norm, @transformer.sublayer_dropout]
encoder/LayerStack.sublayers_initial = [@transformer.sublayer_dropout]
encoder/LayerStack.sublayers_per_layer = \
[@transformer.sublayer_rms_norm,
@transformer.sublayer_call_layer,
@transformer.sublayer_dropout,
@transformer.sublayer_residual]
# Parameters for learning_rate_schedule_noam:
# ==============================================================================
learning_rate_schedule_noam.linear_decay_fraction = 0.0
learning_rate_schedule_noam.multiplier = 1.0
learning_rate_schedule_noam.offset = 0
learning_rate_schedule_noam.warmup_steps = 10000
# Parameters for make_bitransformer:
# ==============================================================================
make_bitransformer.decoder_name = 'decoder'
make_bitransformer.encoder_name = 'encoder'
# Parameters for decoder/make_layer_stack:
# ==============================================================================
decoder/make_layer_stack.block_scope = True
decoder/make_layer_stack.layers = \
[@mesh_tensorflow.transformer.transformer_layers.SelfAttention,
@mesh_tensorflow.transformer.transformer_layers.EncDecAttention,
@mesh_tensorflow.transformer.transformer_layers.DenseReluDense]
decoder/make_layer_stack.num_layers = %num_layers
# Parameters for encoder/make_layer_stack:
# ==============================================================================
encoder/make_layer_stack.block_scope = True
encoder/make_layer_stack.layers = \
[@mesh_tensorflow.transformer.transformer_layers.SelfAttention,
@mesh_tensorflow.transformer.transformer_layers.DenseReluDense]
encoder/make_layer_stack.num_layers = %num_layers
# Parameters for mesh_train_dataset_fn:
# ==============================================================================
mesh_train_dataset_fn.mixture_or_task_name = %MIXTURE_NAME
mesh_train_dataset_fn.pack = True
mesh_train_dataset_fn.seed = None
mesh_train_dataset_fn.shuffle = True
mesh_train_dataset_fn.use_cached = False
# Parameters for noise_span_to_unique_sentinel:
# ==============================================================================
# None.
# Parameters for nonnoise_span_to_unique_sentinel:
# ==============================================================================
# None.
# Parameters for pack_dataset:
# ==============================================================================
pack_dataset.use_custom_ops = False
# Parameters for pack_or_pad:
# ==============================================================================
# None.
# Parameters for random_spans_helper:
# ==============================================================================
random_spans_helper.extra_tokens_per_span_inputs = 1
random_spans_helper.extra_tokens_per_span_targets = 1
random_spans_helper.inputs_length = %inputs_length
random_spans_helper.mean_noise_span_length = %mean_noise_span_length
random_spans_helper.noise_density = %noise_density
random_spans_helper.verbose = False
# Parameters for random_spans_noise_mask:
# ==============================================================================
# None.
# Parameters for random_spans_tokens_length:
# ==============================================================================
# None.
# Parameters for reduce_concat_tokens:
# ==============================================================================
# None.
# Parameters for rewrite_stack_variables:
# ==============================================================================
rewrite_stack_variables.max_combined_variable_size = 536870912
# Parameters for run:
# ==============================================================================
run.autostack = True
run.batch_size = ('tokens_per_batch', 65536)
run.checkpoint_input_pipeline = False
run.dataset_split = 'train'
run.ensemble_inputs = None
run.eval_checkpoint_step = None
run.eval_dataset_fn = None
run.eval_summary_dir = None
run.export_checkpoint_step = None
run.export_path = ''
run.init_checkpoint = None
run.iterations_per_loop = 100
run.keep_checkpoint_max = None
run.layout_rules = \
'ensemble:ensemble,batch:batch,d_ff:model,heads:model,vocab:model,experts:batch'
run.learning_rate_schedule = @learning_rate_schedules.learning_rate_schedule_noam
run.mesh_devices = None
run.mesh_shape = @mesh_tensorflow.transformer.utils.tpu_mesh_shape()
run.mode = 'train'
run.model_type = 'bitransformer'
run.optimizer = @optimize.AdafactorOptimizer
run.output_eval_examples = True
run.perplexity_eval_steps = 100
run.predict_fn = None
run.save_checkpoints_steps = 50000
run.seen_data_init_step = 0
run.sequence_length = {'inputs': 512, 'targets': 128}
run.skip_seen_data = False
run.total_run_steps = None
run.train_dataset_fn = @t5.models.mesh_transformer.mesh_train_dataset_fn
run.train_steps = 524288
run.variable_filter = None
# Parameters for select_random_chunk:
# ==============================================================================
select_random_chunk.additional_feature_keys = None
select_random_chunk.additional_passthrough_keys = None
select_random_chunk.min_length = None
select_random_chunk.passthrough_feature_keys = None
select_random_chunk.sequence_length = None
select_random_chunk.uniform_random_start = False
# Parameters for decoder/SelfAttention:
# ==============================================================================
decoder/SelfAttention.attention_func = None
decoder/SelfAttention.attention_kwargs = None
decoder/SelfAttention.combine_dims = True
decoder/SelfAttention.dropout_rate = %dropout_rate
decoder/SelfAttention.fold_scaling_into_initializer = True
decoder/SelfAttention.keep_query_heads_dims = False
decoder/SelfAttention.key_value_size = %d_kv
decoder/SelfAttention.num_heads = %num_heads
decoder/SelfAttention.num_memory_heads = 0
decoder/SelfAttention.relative_attention_num_buckets = 32
decoder/SelfAttention.relative_attention_type = 'bias_shared'
decoder/SelfAttention.shared_kv = False
# Parameters for encoder/SelfAttention:
# ==============================================================================
encoder/SelfAttention.attention_func = None
encoder/SelfAttention.attention_kwargs = None
encoder/SelfAttention.combine_dims = True
encoder/SelfAttention.dropout_rate = %dropout_rate
encoder/SelfAttention.fold_scaling_into_initializer = True
encoder/SelfAttention.keep_query_heads_dims = False
encoder/SelfAttention.key_value_size = %d_kv
encoder/SelfAttention.num_heads = %num_heads
encoder/SelfAttention.num_memory_heads = 0
encoder/SelfAttention.relative_attention_num_buckets = 32
encoder/SelfAttention.relative_attention_type = 'bias_shared'
encoder/SelfAttention.shared_kv = False
# Parameters for sentinel_id:
# ==============================================================================
sentinel_id.return_value = None
# Parameters for serialize_num_microbatches:
# ==============================================================================
serialize_num_microbatches.tokens_per_microbatch_per_replica = 8192
# Parameters for SimdMeshImpl:
# ==============================================================================
SimdMeshImpl.allreduce_in_bfloat16_max_group_size = 8
# Parameters for split_tokens:
# ==============================================================================
split_tokens.additional_feature_keys = None
split_tokens.num_parallel_calls = -1
split_tokens.passthrough_feature_keys = None
# Parameters for sublayer_call_layer:
# ==============================================================================
# None.
# Parameters for sublayer_dropout:
# ==============================================================================
sublayer_dropout.dropout_rate = %dropout_rate
# Parameters for sublayer_mask_padding:
# ==============================================================================
# None.
# Parameters for sublayer_residual:
# ==============================================================================
# None.
# Parameters for sublayer_rms_norm:
# ==============================================================================
sublayer_rms_norm.epsilon = 1e-06
sublayer_rms_norm.name = 'rms_norm'
# Parameters for tpu_estimator_model_fn:
# ==============================================================================
tpu_estimator_model_fn.hierarchical_tiling_spec = None
tpu_estimator_model_fn.init_variable_filter = ''
tpu_estimator_model_fn.model_info_file = ''
tpu_estimator_model_fn.outer_batch_size = 1
tpu_estimator_model_fn.tpu_summaries = False
# Parameters for tpu_mesh_shape:
# ==============================================================================
tpu_mesh_shape.ensemble_parallelism = None
tpu_mesh_shape.model_parallelism = 1
tpu_mesh_shape.tpu_topology = 'v3-8'
# Parameters for unit_scaling_convention:
# ==============================================================================
unit_scaling_convention.value = False
# Parameters for decoder/Unitransformer:
# ==============================================================================
decoder/Unitransformer.d_model = %d_model
decoder/Unitransformer.ensemble = None
decoder/Unitransformer.input_full_attention = False
decoder/Unitransformer.label_smoothing = 0.0
decoder/Unitransformer.loss_denominator = None
decoder/Unitransformer.loss_fn = None
decoder/Unitransformer.loss_on_targets_only = False
decoder/Unitransformer.max_length = 512
decoder/Unitransformer.positional_embedding = False
decoder/Unitransformer.shared_embedding_and_softmax_weights = True
decoder/Unitransformer.sinusoid_positional_embedding = False
decoder/Unitransformer.token_dropout_rate = 0.0
decoder/Unitransformer.vocab_divisor = 128
decoder/Unitransformer.z_loss = 0.0001
# Parameters for encoder/Unitransformer:
# ==============================================================================
encoder/Unitransformer.d_model = %d_model
encoder/Unitransformer.ensemble = None
encoder/Unitransformer.input_full_attention = False
encoder/Unitransformer.label_smoothing = 0.0
encoder/Unitransformer.loss_denominator = None
encoder/Unitransformer.loss_fn = None
encoder/Unitransformer.loss_on_targets_only = False
encoder/Unitransformer.max_length = 512
encoder/Unitransformer.positional_embedding = False
encoder/Unitransformer.shared_embedding_and_softmax_weights = True
encoder/Unitransformer.sinusoid_positional_embedding = False
encoder/Unitransformer.token_dropout_rate = 0.0
encoder/Unitransformer.vocab_divisor = 128
encoder/Unitransformer.z_loss = 0.0001
# Parameters for VarianceScalingInitializer:
# ==============================================================================
VarianceScalingInitializer.distribution = 'normal'
VarianceScalingInitializer.mode = 'fan_in'
VarianceScalingInitializer.scale = 1.0
# Parameters for VocabEmbedding:
# ==============================================================================
VocabEmbedding.scale_variable_like_classifier_weights = False
|