File size: 2,019 Bytes
2a9c962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from transformers import TrainingArguments, Trainer
from datasets import load_dataset
import evaluate
import numpy as np
from modeling_octagon import OctagonForSequenceClassification, OctagonConfig
from tokenization_octagon import OctagonTokenizer

# Load dataset
dataset = load_dataset("imdb")

# Sample training (for demo purposes, use smaller subset)
train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
eval_dataset = dataset["test"].shuffle(seed=42).select(range(200))

# Initialize tokenizer
tokenizer = OctagonTokenizer.train_tokenizer(
    texts=train_dataset["text"],
    vocab_size=30522,
    save_path="octagon-tokenizer.json"
)

# Tokenize function
def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)

tokenized_train = train_dataset.map(tokenize_function, batched=True)
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)

# Model config
config = OctagonConfig(
    vocab_size=30522,
    hidden_size=128,  # Smaller for demo
    num_hidden_layers=4,
    num_attention_heads=4,
    intermediate_size=512,
    num_labels=2
)

model = OctagonForSequenceClassification(config)

# Metrics
metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return metric.compute(predictions=predictions, references=labels)

# Training args
training_args = TrainingArguments(
    output_dir="octagon_model",
    evaluation_strategy="epoch",
    save_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=3,
    weight_decay=0.01,
    load_best_model_at_end=True,
)

# Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_train,
    eval_dataset=tokenized_eval,
    compute_metrics=compute_metrics,
)

# Train
trainer.train()

# Save model
model.save_pretrained("octagon_model")
tokenizer.save_pretrained("octagon_model")