File size: 1,786 Bytes
2ae8b59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from transformers import PreTrainedTokenizerFast
from tokenizers import Tokenizer, normalizers, pre_tokenizers, trainers, models
from tokenizers.normalizers import Lowercase, NFD, StripAccents
from tokenizers.pre_tokenizers import Whitespace
from typing import Optional, List, Union

class OctagonTokenizer(PreTrainedTokenizerFast):
    def __init__(
        self,
        vocab_file=None,
        merges_file=None,
        tokenizer_file=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        **kwargs
    ):
        super().__init__(
            tokenizer_file=tokenizer_file,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            **kwargs
        )
    
    @classmethod
    def train_tokenizer(cls, texts: List[str], vocab_size: int = 30522, save_path: Optional[str] = None):
        # Initialize a tokenizer
        tokenizer = Tokenizer(models.BPE())
        
        # Normalizer
        tokenizer.normalizer = normalizers.Sequence([NFD(), Lowercase(), StripAccents()])
        
        # Pre-tokenizer
        tokenizer.pre_tokenizer = pre_tokenizers.Whitespace()
        
        # Trainer
        trainer = trainers.BpeTrainer(
            vocab_size=vocab_size,
            special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
        )
        
        # Train the tokenizer
        tokenizer.train_from_iterator(texts, trainer=trainer)
        
        # Save if path is provided
        if save_path:
            tokenizer.save(save_path)
        
        return cls(tokenizer_file=save_path) if save_path else cls(tokenizer_object=tokenizer)