metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2LugandaASR20
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: lg
split: validation
args: lg
metrics:
- name: Wer
type: wer
value: 0.23221005634102265
wav2vec2LugandaASR20
This model is a fine-tuned version of Gemmar/wav2vec2LugandaASR on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2393
- Wer: 0.2322
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1093 | 0.18 | 100 | 0.2134 | 0.2480 |
0.1141 | 0.36 | 200 | 0.2329 | 0.2724 |
0.1224 | 0.54 | 300 | 0.2560 | 0.2864 |
0.1345 | 0.72 | 400 | 0.2348 | 0.2716 |
0.1271 | 0.9 | 500 | 0.2339 | 0.2702 |
0.1232 | 1.08 | 600 | 0.2457 | 0.2806 |
0.1149 | 1.27 | 700 | 0.2372 | 0.2695 |
0.1129 | 1.45 | 800 | 0.2328 | 0.2718 |
0.1196 | 1.63 | 900 | 0.2326 | 0.2615 |
0.1185 | 1.81 | 1000 | 0.2249 | 0.2672 |
0.1159 | 1.99 | 1100 | 0.2202 | 0.2559 |
0.0933 | 2.17 | 1200 | 0.2302 | 0.2559 |
0.0947 | 2.35 | 1300 | 0.2306 | 0.2530 |
0.0941 | 2.53 | 1400 | 0.2325 | 0.2509 |
0.0946 | 2.71 | 1500 | 0.2233 | 0.2495 |
0.0949 | 2.89 | 1600 | 0.2320 | 0.2443 |
0.0883 | 3.07 | 1700 | 0.2383 | 0.2463 |
0.0783 | 3.25 | 1800 | 0.2386 | 0.2437 |
0.0753 | 3.43 | 1900 | 0.2329 | 0.2426 |
0.0772 | 3.62 | 2000 | 0.2317 | 0.2392 |
0.0774 | 3.8 | 2100 | 0.2308 | 0.2353 |
0.0764 | 3.98 | 2200 | 0.2293 | 0.2357 |
0.0666 | 4.16 | 2300 | 0.2446 | 0.2388 |
0.065 | 4.34 | 2400 | 0.2456 | 0.2359 |
0.0643 | 4.52 | 2500 | 0.2446 | 0.2345 |
0.0652 | 4.7 | 2600 | 0.2430 | 0.2325 |
0.0669 | 4.88 | 2700 | 0.2393 | 0.2322 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3