update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_13_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2LugandaASR20
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_13_0
|
17 |
+
type: common_voice_13_0
|
18 |
+
config: lg
|
19 |
+
split: validation
|
20 |
+
args: lg
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.23221005634102265
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2LugandaASR20
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [Gemmar/wav2vec2LugandaASR](https://huggingface.co/Gemmar/wav2vec2LugandaASR) on the common_voice_13_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2393
|
35 |
+
- Wer: 0.2322
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0003
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 200
|
63 |
+
- num_epochs: 5
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
69 |
+
| 0.1093 | 0.18 | 100 | 0.2134 | 0.2480 |
|
70 |
+
| 0.1141 | 0.36 | 200 | 0.2329 | 0.2724 |
|
71 |
+
| 0.1224 | 0.54 | 300 | 0.2560 | 0.2864 |
|
72 |
+
| 0.1345 | 0.72 | 400 | 0.2348 | 0.2716 |
|
73 |
+
| 0.1271 | 0.9 | 500 | 0.2339 | 0.2702 |
|
74 |
+
| 0.1232 | 1.08 | 600 | 0.2457 | 0.2806 |
|
75 |
+
| 0.1149 | 1.27 | 700 | 0.2372 | 0.2695 |
|
76 |
+
| 0.1129 | 1.45 | 800 | 0.2328 | 0.2718 |
|
77 |
+
| 0.1196 | 1.63 | 900 | 0.2326 | 0.2615 |
|
78 |
+
| 0.1185 | 1.81 | 1000 | 0.2249 | 0.2672 |
|
79 |
+
| 0.1159 | 1.99 | 1100 | 0.2202 | 0.2559 |
|
80 |
+
| 0.0933 | 2.17 | 1200 | 0.2302 | 0.2559 |
|
81 |
+
| 0.0947 | 2.35 | 1300 | 0.2306 | 0.2530 |
|
82 |
+
| 0.0941 | 2.53 | 1400 | 0.2325 | 0.2509 |
|
83 |
+
| 0.0946 | 2.71 | 1500 | 0.2233 | 0.2495 |
|
84 |
+
| 0.0949 | 2.89 | 1600 | 0.2320 | 0.2443 |
|
85 |
+
| 0.0883 | 3.07 | 1700 | 0.2383 | 0.2463 |
|
86 |
+
| 0.0783 | 3.25 | 1800 | 0.2386 | 0.2437 |
|
87 |
+
| 0.0753 | 3.43 | 1900 | 0.2329 | 0.2426 |
|
88 |
+
| 0.0772 | 3.62 | 2000 | 0.2317 | 0.2392 |
|
89 |
+
| 0.0774 | 3.8 | 2100 | 0.2308 | 0.2353 |
|
90 |
+
| 0.0764 | 3.98 | 2200 | 0.2293 | 0.2357 |
|
91 |
+
| 0.0666 | 4.16 | 2300 | 0.2446 | 0.2388 |
|
92 |
+
| 0.065 | 4.34 | 2400 | 0.2456 | 0.2359 |
|
93 |
+
| 0.0643 | 4.52 | 2500 | 0.2446 | 0.2345 |
|
94 |
+
| 0.0652 | 4.7 | 2600 | 0.2430 | 0.2325 |
|
95 |
+
| 0.0669 | 4.88 | 2700 | 0.2393 | 0.2322 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.30.2
|
101 |
+
- Pytorch 2.0.1+cu118
|
102 |
+
- Datasets 2.13.0
|
103 |
+
- Tokenizers 0.13.3
|