File size: 35,219 Bytes
bb13925 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training a CLIP like dual encoder models using text and vision encoders in the library.
The script can be used to train CLIP like models for languages other than english by using
a text encoder pre-trained in the desired language. Currently this script support the following vision
and text models:
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
"""
import json
import logging
import os
import sys
import time
import numpy as np
from dataclasses import dataclass, field
from pathlib import Path
from typing import Callable, Optional
import shutil
import gc
import pyarrow as pa
try:
from dotenv import load_dotenv
load_dotenv("../.env")
except:
print("Couldn't find ../.env file")
import wandb
from transformers.file_utils import PushToHubMixin
import torch
from torchvision.datasets import VisionDataset
from torchvision.io import ImageReadMode, read_image
from torchvision.transforms import (
CenterCrop,
ConvertImageDtype,
Normalize,
Resize,
ColorJitter,
RandomHorizontalFlip,
RandomRotation,
RandomCrop,
RandomAffine,
RandomPerspective,
RandomAutocontrast,
RandomEqualize,
)
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
import jax
import jax.numpy as jnp
import optax
import transformers
from flax import jax_utils
from flax.jax_utils import unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, shard, shard_prng_key
from modeling_hybrid_clip import FlaxHybridCLIP
from configuration_hybrid_clip import HybridCLIPConfig
from transformers import (
AutoTokenizer,
HfArgumentParser,
TrainingArguments,
is_tensorboard_available,
set_seed,
)
from numpy.random import default_rng
from flax.serialization import to_bytes, from_bytes
logger = logging.getLogger(__name__)
def mb_item(x):
return x.item() if hasattr(x, "item") else x
# checkpoint functions
def save_model_checkpoint(
model,
save_dir,
state,
logger,
organization,
with_opt: bool = False,
push_to_hub: bool = False,
overwrite=False,
**kwargs,
):
state = jax_utils.unreplicate(state)
#params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
logger.info(f"Saving Checkpoint in {save_dir}")
ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
if os.path.exists(ckpt_save_dir) and not overwrite:
logger.info("checkpoint exists, skipping overwrite")
else:
model.save_pretrained(
ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
)
if with_opt:
with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
f.write(to_bytes(state.opt_state))
with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
json.dump({"step": state.step.item()}, f)
logger.info("checkpoint saved")
if push_to_hub:
repo_name = Path(save_dir).name
repo_url = PushToHubMixin._get_repo_url_from_name(
repo_name, organization=organization, private=False, use_auth_token=True
)
repo = PushToHubMixin._create_or_get_repo(
save_dir,
repo_url=repo_url,
organization=organization,
use_auth_token=True,
)
commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
logger.info(f"Model pushed to the hub in this commit: {url}")
def restore_model_checkpoint(save_dir, state, logger):
logger.info(f"Restoring checkpoint from {save_dir}.")
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
params = from_bytes(state.params, f.read())
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
opt_state = from_bytes(state.opt_state, f.read())
with open(os.path.join(save_dir, "training_state.json"), "r") as f:
training_state = json.load(f)
step = training_state["step"]
logger.info("checkpoint restored")
# return state.replace(step=step, params=params, opt_state=opt_state), step
return params, opt_state, step
def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
"Removes older checkpoints so that `save_total_limit` checkpoints are kept"
# TODO: what to remove is decided using step number only, we might want to improve that
ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
# sort checkpoints by step
ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
ckpts_to_delete = ckpts_sorted[:-save_total_limit]
for ckpt in ckpts_to_delete:
logger.info(
f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
)
shutil.rmtree(ckpt)
# Cache the result
has_tensorboard = is_tensorboard_available()
if has_tensorboard:
try:
from flax.metrics.tensorboard import SummaryWriter
except ImportError as ie:
has_tensorboard = False
print(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
else:
print(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
text_model_name_or_path: str = field(
metadata={
"help": "The text model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
vision_model_name_or_path: str = field(
metadata={
"help": "The vision model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
from_pt: bool = field(
default=True,
metadata={
"help": "whether to load the text and vision model using PyTorch checkpoints."
},
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from s3"
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
data_dir: Optional[str] = field(
default=None, metadata={"help": "The data directory containing input files."}
)
train_file: Optional[str] = field(
default=None,
metadata={"help": "The input training data file (a jsonlines file)."},
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
)
max_seq_length: Optional[int] = field(
default=72,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
def __post_init__(self):
if self.train_file is None and self.validation_file is None:
raise ValueError(
"Need either a dataset name or a training/validation file."
)
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension == "json", "`train_file` should be a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension == "json", "`validation_file` should be a json file."
# We use torchvision for faster image pre-processing.
# We need to ensure faster processing speed as it can become a bottleneck on TPU
class Transform(torch.nn.Module):
def __init__(self, image_size, augment=False):
super().__init__()
if not augment:
self.transforms = torch.nn.Sequential(
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
ConvertImageDtype(torch.float),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
)
else:
self.transforms = torch.nn.Sequential(
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
# CenterCrop(image_size),
RandomCrop([image_size], pad_if_needed=True, padding_mode="edge"),
ColorJitter(hue=0.1),
RandomHorizontalFlip(),
# RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=128),
RandomAffine(
degrees=15,
translate=(0.1, 0.1),
scale=(0.8, 1.2),
shear=(-15, 15, -15, 15),
interpolation=InterpolationMode.BILINEAR,
fill=127,
),
RandomPerspective(
distortion_scale=0.3,
p=0.3,
interpolation=InterpolationMode.BILINEAR,
fill=127,
),
RandomAutocontrast(p=0.3),
RandomEqualize(p=0.3),
ConvertImageDtype(torch.float),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
x = self.transforms(x)
return x
class ImageTextDataset(VisionDataset):
"""
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
Args:
root: (string): The root path where the dataset is stored
file_path: (string): Path to the file containing the image_paths and associated captions.
The expected format is jsonlines where each line is a json object containing to keys.
`image_path`: The path to the image.
`captions`: An `array` of captions.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
transforms (callable, optional): A function/transform that takes input sample and its target as entry
and returns a transformed version.
"""
def __init__(
self,
root: str,
file_path: str,
captions_per_image=-1,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None,
seed=42,
):
super().__init__(root, transforms, transform, target_transform)
with open(file_path, "r") as f:
examples = [json.loads(line) for line in f.readlines()]
#examples = pa.array([json.loads(line) for line in f.readlines()])
self.rand_generator = default_rng(seed)
self.captions = []
self.image_paths = []
for example in examples:
if captions_per_image <= -1:
self.captions.append(example["captions"])
elif captions_per_image > 0:
self.captions.append(example["captions"][:captions_per_image])
else:
raise ValueError("captions per image cannot be zero")
#self.image_paths.append(str(example["image_path"]))
self.image_paths.append(example["image_path"])
self.captions = self.captions
self.image_paths = self.image_paths
def _load_image(self, idx: int):
path = self.image_paths[idx]
im = read_image(path, mode=ImageReadMode.RGB)
return im
def _load_target(self, idx):
return str(self.rand_generator.choice(self.captions[idx]))
# if len(self.captions[idx]) > 1:
# caption_idx = np.random.randint(0, len(self.captions[idx]))
# else:
# caption_idx = 0
# return self.captions[idx][caption_idx]
def __getitem__(self, index: int):
image = self._load_image(index)
target = self._load_target(index)
if self.transforms is not None:
image, target = self.transforms(image, target)
return image, target
def __len__(self) -> int:
return len(self.captions)
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
def replicate(self):
return jax_utils.replicate(self).replace(
dropout_rng=shard_prng_key(self.dropout_rng)
)
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
def create_learning_rate_fn(
train_ds_size: int,
train_batch_size: int,
num_train_epochs: int,
num_warmup_steps: int,
learning_rate: float,
linear=False,
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
if linear:
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
)
decay_fn = optax.linear_schedule(
init_value=learning_rate,
end_value=0,
transition_steps=num_train_steps - num_warmup_steps,
)
else:
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
)
decay_fn = optax.cosine_decay_schedule(
init_value=learning_rate,
decay_steps=num_train_steps - num_warmup_steps,
alpha=0.0,
)
schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
)
return schedule_fn
def main():
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
parser.add_argument("--log_wandb", action="store_true")
parser.add_argument("--freeze_backbones", action="store_true")
parser.add_argument("--exp_name", type=str, default=None)
parser.add_argument("--run_from_checkpoint", type=str, default=None)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
(
model_args,
data_args,
training_args,
args,
) = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer
)
elif model_args.text_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.text_model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if args.run_from_checkpoint is not None:
with open(f"{args.run_from_checkpoint}/config.json", "r") as fp:
config_dict = json.load(fp)
config_dict["vision_config"]["model_type"] = "clip"
config = HybridCLIPConfig(**config_dict)
model = FlaxHybridCLIP.from_pretrained(
args.run_from_checkpoint,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
config=config,
freeze_backbones=args.freeze_backbones
)
else:
model = FlaxHybridCLIP.from_text_vision_pretrained(
model_args.text_model_name_or_path,
model_args.vision_model_name_or_path,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
text_from_pt=False,
vision_from_pt=model_args.from_pt,
freeze_backbones=args.freeze_backbones
)
config = model.config
# set seed for torch dataloaders
set_seed(training_args.seed)
# Initialize torchvision transforms and jit them for faster processing
train_preprocess = Transform(config.vision_config.image_size, augment=True)
train_preprocess = torch.jit.script(train_preprocess)
val_preprocess = Transform(config.vision_config.image_size)
val_preprocess = torch.jit.script(val_preprocess)
# Initialize the image-text dataset
train_dataset = ImageTextDataset(
data_args.data_dir,
data_args.train_file,
captions_per_image=-1,
transform=train_preprocess,
seed=training_args.seed,
)
eval_dataset = ImageTextDataset(
data_args.data_dir,
data_args.validation_file,
captions_per_image=-1,
transform=val_preprocess,
seed=training_args.seed,
)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = (
int(training_args.per_device_train_batch_size) * jax.device_count()
)
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
steps_per_epoch = len(train_dataset) // train_batch_size
total_train_steps = steps_per_epoch * num_epochs
# Use collate function to tokenizer the text and convert the processed images to numpy
def collate_fn(examples):
pixel_values = (
torch.stack([example[0] for example in examples])
.permute(0, 2, 3, 1)
.numpy()
)
captions = [example[1] for example in examples]
inputs = tokenizer(
captions,
max_length=data_args.max_seq_length,
padding="max_length",
truncation=True,
return_tensors="np",
)
batch = {
"pixel_values": pixel_values,
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
}
return batch
# Create data loaders
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=data_args.preprocessing_num_workers,
#persistent_workers=True,
drop_last=True,
collate_fn=collate_fn,
)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=eval_batch_size,
shuffle=False,
num_workers=data_args.preprocessing_num_workers,
#persistent_workers=True,
drop_last=True,
collate_fn=collate_fn,
)
# Enable tensorboard only on the master node
if has_tensorboard and jax.process_index() == 0:
summary_writer = SummaryWriter(
log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()
)
# Enable wandb
if jax.process_index() == 0 and args.log_wandb:
try:
wandb.init(
name=args.exp_name,
entity="galuh",
project="indoclip",
sync_tensorboard=True
)
wandb.config.update(training_args)
wandb.config.update(model_args)
wandb.config.update(data_args)
except ImportError as e:
print(e)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Create learning rate schedule
if training_args.warmup_steps:
warmup_steps = training_args.warmup_steps
elif training_args.warmup_ratio:
warmup_steps = int(training_args.warmup_ratio * total_train_steps)
else:
raise RuntimeError(
"You have to specify either the warmup_steps or warmup_ratio CLI parameter"
)
decay_lr_schedule_fn = create_learning_rate_fn(
len(train_dataset),
train_batch_size,
training_args.num_train_epochs,
warmup_steps,
training_args.learning_rate,
linear=False, # set False to activate cosine annealing
)
# create adam optimizer
# optimizer = optax.adamw(
# learning_rate=decay_lr_schedule_fn,
# b1=training_args.adam_beta1,
# b2=training_args.adam_beta2,
# eps=training_args.adam_epsilon,
# weight_decay=training_args.weight_decay,
# )
optimizer = optax.chain(
optax.adaptive_grad_clip(0.01, eps=0.001),
optax.scale_by_belief(),
optax.scale_by_schedule(decay_lr_schedule_fn),
optax.scale(-1.0),
)
'''optimizer = optax.adafactor(
learning_rate=decay_lr_schedule_fn,
)'''
# Setup train state
state = TrainState.create(
apply_fn=model.__call__,
params=model.params,
tx=optimizer,
dropout_rng=dropout_rng,
)
def cross_entropy(logits, axis):
logprobs = jax.nn.log_softmax(logits, axis=axis)
nll = jnp.diag(logprobs)
ce = -jnp.mean(nll)
return ce
def clip_loss(similarity):
loss = (
cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)
) / 2
return loss
# Define gradient update step fn
def train_step(state, batch):
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params):
logits = state.apply_fn(
**batch, params=params, dropout_rng=dropout_rng, train=True
)[0]
loss = clip_loss(logits)
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
metrics = {
"loss": loss,
"learning_rate": decay_lr_schedule_fn(state.step),
}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state, metrics
# Define eval fn
def eval_step(params, batch):
logits = model(**batch, params=params, train=False)[0]
loss = clip_loss(logits)
# summarize metrics
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return metrics
# Create parallel version of the train and eval step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
p_eval_step = jax.pmap(eval_step, "batch")
# Replicate the train state on each device
state = state.replicate()
logger.info("***** Running training *****")
logger.info(f" TPU = {jax.device_count()}")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel & distributed) = {train_batch_size}"
)
logger.info(f" Total optimization steps = {total_train_steps}")
logger.info(f" Total warmup steps = {warmup_steps}")
train_time = 0
# Create sampling rng
rng, input_rng = jax.random.split(rng)
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
for epoch in epochs:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
train_metrics = []
num_train_samples = len(train_dataset)
steps_per_epoch = len(train_dataset) // train_batch_size
train_step_progress_bar = tqdm(
total=steps_per_epoch, desc="Training...", position=1, leave=False
)
# train
for step, batch in enumerate(train_loader):
batch = shard(batch)
state, train_metric = p_train_step(state, batch)
train_metrics.append(train_metric)
train_step_progress_bar.update(1)
cur_step = epoch * (num_train_samples // train_batch_size) + step + 1
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
train_time += time.time() - train_start
train_metric = unreplicate(train_metric)
# Save tensorboard metrics
if has_tensorboard and jax.process_index() == 0:
write_train_metric(
summary_writer, train_metrics, train_time, cur_step
)
# Save wandb metrics
if args.log_wandb and jax.process_index() == 0:
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
_metrics = {f'train_{k}': jax.device_get(v) for k,v in train_metric.items()}
wandb.log({"train_step":cur_step, **_metrics}, commit=True)
epochs.write(
f"Log at Step: {cur_step} (Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
)
logging.info("Emptying train metrics")
del train_metric
del train_metrics
train_metrics = []
gc.collect()
torch.cuda.empty_cache()
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
# ======================== Evaluating ==============================
num_eval_samples = len(eval_dataset)
eval_metrics = []
eval_steps = len(eval_dataset) // eval_batch_size
eval_step_progress_bar = tqdm(
total=eval_steps, desc="Evaluating...", position=2, leave=False
)
for batch in eval_loader:
# Model forward
batch = shard(batch)
metrics = p_eval_step(state.params, batch)
eval_metrics.append(metrics)
eval_step_progress_bar.update(1)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
# Print metrics and update progress bar
desc = f"Eval at Step: {cur_step} (Loss: {eval_metrics['loss']})"
epochs.write(desc)
epochs.desc = desc
# Save tfboard eval
if has_tensorboard and jax.process_index() == 0:
write_eval_metric(summary_writer, eval_metrics, cur_step)
# Save eval wandb
if args.log_wandb and jax.process_index() == 0:
#_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
_metrics = {f'eval_{k}': jax.device_get(v) for k,v in eval_metrics.items()}
wandb.log({"eval_step":cur_step, **_metrics})
logging.info("Emptying eval metrics")
del eval_metrics
eval_metrics = []
if cur_step % training_args.save_steps == 0 and cur_step > 0:
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
# params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
# model.save_pretrained(
# training_args.output_dir,
# params=params,
# push_to_hub=training_args.push_to_hub,
# commit_message=f"Saving weights and logs of step {cur_step}",
# )
save_model_checkpoint(
model,
training_args.output_dir,
state,
logger,
training_args.push_to_hub_organization,
with_opt=True,
push_to_hub=training_args.push_to_hub,
overwrite=True,
)
# if model_args.save_optimizer:
# # this saves full state including optimizer
# save_checkpoint(training_args.output_dir, state, state.step, keep=training_args.save_total_limit, overwrite=True)
if training_args.save_total_limit is not None:
rotate_checkpoints(
training_args.output_dir,
training_args.save_total_limit,
logger,
)
train_step_progress_bar.close() #check
'''# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(unreplicate(state.params))
model.save_pretrained(
training_args.output_dir + f"/{epoch+1}/",
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of epoch {epoch+1}",
)'''
# save model after training is over
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message="Add final model",
)
if __name__ == "__main__":
main()
|