metadata
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What types of additional risks might future updates incorporate?
sentences:
- >-
Inaccuracies in these labels can impact the “stability” or robustness of
these benchmarks, which many GAI practitioners consider during the model
selection process.
- >-
For example, when prompted to generate images of CEOs, doctors, lawyers,
and judges, current text-to-image models underrepresent women and/or
racial minorities , and people with disabilities .
- >-
Future updates may incorporate additional risks or provide further
details on the risks identified below.
- source_sentence: >-
What are some potential consequences of the abuse and misuse of AI systems
by humans?
sentences:
- >-
Even when trained on “clean” data, increasingly capable GAI models can
synthesize or produce synthetic NCII and CSAM.
- >-
3 the abuse, misuse, and unsafe repurposing by humans (adversarial or
not ), and others result from interactions between a human and an AI
system.
- >-
Energy and carbon emissions vary based on what is being done with the
GAI model (i.e., pre -training, fine -tuning, inference), the modality of
the content , hardware used, and type of task or application .
- source_sentence: What types of digital content can be included in GAI?
sentences:
- >-
Errors in t hird-party GAI components can also have downstream impacts
on accuracy and robustness .
- >-
In direct prompt injections, attackers might craft malicious prompts and
input them directly to a GAI system , with a variety of downstream
negative consequences to interconnected systems.
- >-
This can include images, videos, audio, text, and other digital
content.” While not all GAI is derived from foundation models, for
purposes of this document, GAI generally refers to generative foundation
models .
- source_sentence: >-
What are the implications of harmful bias and homogenization in relation
to stereotypical content?
sentences:
- >-
These risks provide a lens through which organizations can frame and
execute risk management efforts.
- >-
13 • Not every suggested action appl ies to every AI Actor14 or is
relevant to every AI Actor Task .
- >-
The spread of denigrating or stereotypical content can also further
exacerbate representational harms (see Harmful Bias and Homogenization
below).
- source_sentence: >-
What are the inventory exemptions defined in organizational policies for
GAI systems embedded into application software?
sentences:
- >-
Methods for creating smaller versions of train ed models, such as model
distillation or compression, could reduce environmental impacts at
inference time, but training and tuning such models may still contribute
to their environmental impacts .
- >-
For example, predictive inferences made by GAI models based on PII or
protected attributes c an contribute to adverse decisions , leading to
representational or allocative harms to individuals or groups (see
Harmful Bias and Homogenization below).
- >-
Information Security GV-1.6-002 Define any inventory exemptions in
organizational policies for GAI systems embedded into application
software .
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.98
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.99
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3266666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19799999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.98
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.99
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9563669441556807
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9417619047619047
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9417619047619047
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.98
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.99
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9
name: Dot Precision@1
- type: dot_precision@3
value: 0.3266666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.19799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.9
name: Dot Recall@1
- type: dot_recall@3
value: 0.98
name: Dot Recall@3
- type: dot_recall@5
value: 0.99
name: Dot Recall@5
- type: dot_recall@10
value: 1
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9563669441556807
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9417619047619047
name: Dot Mrr@10
- type: dot_map@100
value: 0.9417619047619047
name: Dot Map@100
SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What are the inventory exemptions defined in organizational policies for GAI systems embedded into application software?',
'Information Security GV-1.6-002 Define any inventory exemptions in organizational policies for GAI systems embedded into application software .',
'For example, predictive inferences made by GAI models based on PII or protected attributes c an contribute to adverse decisions , leading to representational or allocative harms to individuals or groups (see Harmful Bias and Homogenization below).',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9 |
cosine_accuracy@3 | 0.98 |
cosine_accuracy@5 | 0.99 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9 |
cosine_precision@3 | 0.3267 |
cosine_precision@5 | 0.198 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9 |
cosine_recall@3 | 0.98 |
cosine_recall@5 | 0.99 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9564 |
cosine_mrr@10 | 0.9418 |
cosine_map@100 | 0.9418 |
dot_accuracy@1 | 0.9 |
dot_accuracy@3 | 0.98 |
dot_accuracy@5 | 0.99 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.9 |
dot_precision@3 | 0.3267 |
dot_precision@5 | 0.198 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.9 |
dot_recall@3 | 0.98 |
dot_recall@5 | 0.99 |
dot_recall@10 | 1.0 |
dot_ndcg@10 | 0.9564 |
dot_mrr@10 | 0.9418 |
dot_map@100 | 0.9418 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 600 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 600 samples:
sentence_0 sentence_1 type string string details - min: 7 tokens
- mean: 18.93 tokens
- max: 33 tokens
- min: 4 tokens
- mean: 43.35 tokens
- max: 165 tokens
- Samples:
sentence_0 sentence_1 What are indirect prompt injections and how can they exploit vulnerabilities?
Security researchers have already demonstrated how indirect prompt injections can exploit vulnerabilities by steal ing proprietary data or running malicious code remotely on a machine.
What potential consequences can arise from exploiting vulnerabilities through indirect prompt injections?
Security researchers have already demonstrated how indirect prompt injections can exploit vulnerabilities by steal ing proprietary data or running malicious code remotely on a machine.
What factors might organizations consider when tailoring their measurement of GAI risks?
Organizations may choose to tailor how they measure GAI risks based on these characteristics .
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 30 | 0.9216 |
1.6667 | 50 | 0.9292 |
2.0 | 60 | 0.9361 |
3.0 | 90 | 0.9418 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.1
- Transformers: 4.45.0
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}