Gaie commited on
Commit
502750c
1 Parent(s): 0466088

init upload

Browse files
.gitignore ADDED
File without changes
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/data/jiayi/Llama-2-7b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 32,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.36.2",
26
+ "use_cache": true,
27
+ "vocab_size": 32001
28
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.36.2"
10
+ }
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d71404b4bdee09e45bf10678b2b88c01a123198abe099290b0406ce4d0a112e7
3
+ size 4840412800
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0ffc18bba9f0a39bde5b3fb9a6956d2855b463c67c47ac349a005b60f36fb21
3
+ size 4857206856
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6636c26b24005f1a4cf59fc9e976825c31abf688baf77c8ab55ad8df2b144ddc
3
+ size 4857206904
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5036d7b3c04e397905883b9a3289a1fda790df357200251eaf6a5068e0cb0135
3
+ size 4857206904
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1536885e00c154432078d792b1dec87fe5087c65a432551c1518013e4c02e86a
3
+ size 4857206904
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1232707c95bcb23c1d82fa366a3c60408aa42c5dd8fa41c9b02b86cbb0fdcd8b
3
+ size 2684488496
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26953695232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00005-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00005-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00006-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00006-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00006-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
296
+ "model.norm.weight": "model-00006-of-00006.safetensors"
297
+ }
298
+ }
script.sh ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #!/usr/bin/env bash
3
+ #
4
+ # Copyright 2023 PKU-Alignment Team. All Rights Reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ # ==============================================================================
18
+
19
+ if [ -z "${BASH_VERSION}" ]; then
20
+ echo "Please use bash to run this script." >&2
21
+ exit 1
22
+ fi
23
+
24
+ set -x
25
+
26
+ SCRIPT_DIR="$(cd "$(dirname "$0")" &>/dev/null && pwd)"
27
+ ROOT_DIR="$(dirname "${SCRIPT_DIR}")"
28
+ export PYTHONPATH="${ROOT_DIR}${PYTHONPATH:+:${PYTHONPATH}}"
29
+ export LOGLEVEL="${LOGLEVEL:-WARNING}"
30
+
31
+ MODEL_NAME_OR_PATH="/mnt/data/jiayi/Llama-2-7b-hf"
32
+ OUTPUT_DIR="${ROOT_DIR}/alpaca-2"
33
+ unset HOSTFILE
34
+ ZERO_STAGE=3
35
+ OFFLOAD="none"
36
+ while [[ "$#" -gt 0 ]]; do
37
+ arg="$1"
38
+ shift
39
+ case "${arg}" in
40
+ --model_name_or_path)
41
+ MODEL_NAME_OR_PATH="$1"
42
+ shift
43
+ ;;
44
+ --model_name_or_path=*)
45
+ MODEL_NAME_OR_PATH="${arg#*=}"
46
+ ;;
47
+ --output_dir)
48
+ OUTPUT_DIR="$1"
49
+ shift
50
+ ;;
51
+ --output_dir=*)
52
+ OUTPUT_DIR="${arg#*=}"
53
+ ;;
54
+ --hostfile)
55
+ HOSTFILE="$1"
56
+ shift
57
+ ;;
58
+ --hostfile=*)
59
+ HOSTFILE="${arg#*=}"
60
+ ;;
61
+ --zero_stage)
62
+ ZERO_STAGE="$1"
63
+ shift
64
+ ;;
65
+ --zero_stage=*)
66
+ ZERO_STAGE="${arg#*=}"
67
+ ;;
68
+ --offload)
69
+ OFFLOAD="$1"
70
+ shift
71
+ ;;
72
+ --offload=*)
73
+ OFFLOAD="${arg#*=}"
74
+ ;;
75
+ *)
76
+ echo "Unknown parameter passed: '${arg}'" >&2
77
+ exit 1
78
+ ;;
79
+ esac
80
+ done
81
+
82
+ mkdir -p "${OUTPUT_DIR}"
83
+ OUTPUT_DIR="$(cd "${OUTPUT_DIR}" &>/dev/null && pwd)"
84
+ if [[ ! -f "${OUTPUT_DIR}/.gitignore" ]]; then
85
+ echo '*' >"${OUTPUT_DIR}/.gitignore"
86
+ fi
87
+
88
+ cp -f "$0" "${OUTPUT_DIR}/script.sh"
89
+
90
+ if [[ -z "${WANDB_API_KEY}" ]]; then
91
+ export WANDB_MODE="offline"
92
+ fi
93
+
94
+ MASTER_PORT_START=10000
95
+ MASTER_PORT_END=65535
96
+ MASTER_PORT="$(
97
+ comm -23 \
98
+ <(seq "${MASTER_PORT_START}" "${MASTER_PORT_END}" | sort) \
99
+ <(ss -Htan | awk '{ print $4 }' | awk -F ':' '{ print $NF }' | sort -u) |
100
+ shuf | head -n 1
101
+ )"
102
+
103
+ DEEPSPEED_ARGS=()
104
+ if [[ -n "${HOSTFILE+x}" ]]; then
105
+ DEEPSPEED_ARGS+=("--hostfile" "${HOSTFILE}")
106
+ fi
107
+ DEEPSPEED_ARGS+=("--master_port" "${MASTER_PORT}")
108
+
109
+ exec 1> >(tee "${OUTPUT_DIR}/stdout.log" >&1) 2> >(tee "${OUTPUT_DIR}/stderr.log" >&2)
110
+
111
+ torchrun --nproc_per_node=8 --master_port="${MASTER_PORT}" train.py \
112
+ --model_name_or_path "${MODEL_NAME_OR_PATH}" \
113
+ --data_path ./alpaca_data.json \
114
+ --bf16 True \
115
+ --output_dir "${OUTPUT_DIR}" \
116
+ --num_train_epochs 3 \
117
+ --per_device_train_batch_size 4 \
118
+ --per_device_eval_batch_size 4 \
119
+ --gradient_accumulation_steps 8 \
120
+ --evaluation_strategy "no" \
121
+ --save_strategy "steps" \
122
+ --save_steps 2000 \
123
+ --save_total_limit 1 \
124
+ --learning_rate 2e-5 \
125
+ --weight_decay 0. \
126
+ --warmup_ratio 0.03 \
127
+ --lr_scheduler_type "cosine" \
128
+ --logging_steps 1 \
129
+ --fsdp "full_shard auto_wrap" \
130
+ --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
131
+ --tf32 True
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
stderr.log ADDED
The diff for this file is too large to render. See raw diff
 
stdout.log ADDED
@@ -0,0 +1,610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {'loss': 1.4447, 'learning_rate': 1.0526315789473685e-06, 'epoch': 0.0}
2
+ {'loss': 1.3907, 'learning_rate': 2.105263157894737e-06, 'epoch': 0.01}
3
+ {'loss': 1.5017, 'learning_rate': 3.157894736842105e-06, 'epoch': 0.01}
4
+ {'loss': 1.4544, 'learning_rate': 4.210526315789474e-06, 'epoch': 0.02}
5
+ {'loss': 1.3461, 'learning_rate': 5.263157894736842e-06, 'epoch': 0.02}
6
+ {'loss': 1.3171, 'learning_rate': 6.31578947368421e-06, 'epoch': 0.03}
7
+ {'loss': 1.1776, 'learning_rate': 7.368421052631579e-06, 'epoch': 0.03}
8
+ {'loss': 1.1273, 'learning_rate': 8.421052631578948e-06, 'epoch': 0.04}
9
+ {'loss': 1.1275, 'learning_rate': 9.473684210526315e-06, 'epoch': 0.04}
10
+ {'loss': 1.1438, 'learning_rate': 1.0526315789473684e-05, 'epoch': 0.05}
11
+ {'loss': 1.1209, 'learning_rate': 1.1578947368421053e-05, 'epoch': 0.05}
12
+ {'loss': 1.1103, 'learning_rate': 1.263157894736842e-05, 'epoch': 0.06}
13
+ {'loss': 1.0928, 'learning_rate': 1.3684210526315791e-05, 'epoch': 0.06}
14
+ {'loss': 1.1159, 'learning_rate': 1.4736842105263159e-05, 'epoch': 0.07}
15
+ {'loss': 1.0849, 'learning_rate': 1.578947368421053e-05, 'epoch': 0.07}
16
+ {'loss': 1.1111, 'learning_rate': 1.6842105263157896e-05, 'epoch': 0.08}
17
+ {'loss': 1.0601, 'learning_rate': 1.7894736842105264e-05, 'epoch': 0.08}
18
+ {'loss': 1.0465, 'learning_rate': 1.894736842105263e-05, 'epoch': 0.09}
19
+ {'loss': 1.1147, 'learning_rate': 2e-05, 'epoch': 0.09}
20
+ {'loss': 1.0821, 'learning_rate': 1.9999858236410775e-05, 'epoch': 0.1}
21
+ {'loss': 1.0825, 'learning_rate': 1.9999432949662483e-05, 'epoch': 0.1}
22
+ {'loss': 1.0586, 'learning_rate': 1.9998724151813157e-05, 'epoch': 0.11}
23
+ {'loss': 0.9922, 'learning_rate': 1.9997731862959143e-05, 'epoch': 0.11}
24
+ {'loss': 1.0883, 'learning_rate': 1.999645611123453e-05, 'epoch': 0.12}
25
+ {'loss': 1.0732, 'learning_rate': 1.999489693281034e-05, 'epoch': 0.12}
26
+ {'loss': 1.0446, 'learning_rate': 1.9993054371893526e-05, 'epoch': 0.13}
27
+ {'loss': 1.0727, 'learning_rate': 1.9990928480725694e-05, 'epoch': 0.13}
28
+ {'loss': 1.0571, 'learning_rate': 1.9988519319581637e-05, 'epoch': 0.14}
29
+ {'loss': 1.0468, 'learning_rate': 1.998582695676762e-05, 'epoch': 0.14}
30
+ {'loss': 1.0842, 'learning_rate': 1.998285146861945e-05, 'epoch': 0.15}
31
+ {'loss': 1.049, 'learning_rate': 1.99795929395003e-05, 'epoch': 0.15}
32
+ {'loss': 1.0692, 'learning_rate': 1.997605146179833e-05, 'epoch': 0.16}
33
+ {'loss': 1.102, 'learning_rate': 1.997222713592405e-05, 'epoch': 0.16}
34
+ {'loss': 1.0966, 'learning_rate': 1.9968120070307503e-05, 'epoch': 0.17}
35
+ {'loss': 1.0737, 'learning_rate': 1.9963730381395154e-05, 'epoch': 0.17}
36
+ {'loss': 1.1272, 'learning_rate': 1.9959058193646618e-05, 'epoch': 0.18}
37
+ {'loss': 1.0473, 'learning_rate': 1.9954103639531116e-05, 'epoch': 0.18}
38
+ {'loss': 1.0833, 'learning_rate': 1.9948866859523717e-05, 'epoch': 0.19}
39
+ {'loss': 1.0726, 'learning_rate': 1.9943348002101374e-05, 'epoch': 0.19}
40
+ {'loss': 1.0654, 'learning_rate': 1.993754722373869e-05, 'epoch': 0.2}
41
+ {'loss': 1.1264, 'learning_rate': 1.9931464688903502e-05, 'epoch': 0.2}
42
+ {'loss': 1.1054, 'learning_rate': 1.9925100570052194e-05, 'epoch': 0.21}
43
+ {'loss': 1.0547, 'learning_rate': 1.9918455047624847e-05, 'epoch': 0.21}
44
+ {'loss': 1.0563, 'learning_rate': 1.9911528310040073e-05, 'epoch': 0.22}
45
+ {'loss': 1.126, 'learning_rate': 1.990432055368971e-05, 'epoch': 0.22}
46
+ {'loss': 1.1026, 'learning_rate': 1.989683198293324e-05, 'epoch': 0.23}
47
+ {'loss': 1.0855, 'learning_rate': 1.9889062810092002e-05, 'epoch': 0.23}
48
+ {'loss': 1.0877, 'learning_rate': 1.9881013255443152e-05, 'epoch': 0.24}
49
+ {'loss': 1.0778, 'learning_rate': 1.9872683547213446e-05, 'epoch': 0.24}
50
+ {'loss': 1.093, 'learning_rate': 1.9864073921572756e-05, 'epoch': 0.25}
51
+ {'loss': 1.0727, 'learning_rate': 1.9855184622627362e-05, 'epoch': 0.25}
52
+ {'loss': 1.102, 'learning_rate': 1.9846015902413053e-05, 'epoch': 0.26}
53
+ {'loss': 1.0143, 'learning_rate': 1.9836568020887963e-05, 'epoch': 0.26}
54
+ {'loss': 1.0569, 'learning_rate': 1.982684124592521e-05, 'epoch': 0.27}
55
+ {'loss': 1.0162, 'learning_rate': 1.9816835853305306e-05, 'epoch': 0.27}
56
+ {'loss': 1.1145, 'learning_rate': 1.9806552126708322e-05, 'epoch': 0.28}
57
+ {'loss': 1.0594, 'learning_rate': 1.9795990357705853e-05, 'epoch': 0.28}
58
+ {'loss': 1.0457, 'learning_rate': 1.978515084575276e-05, 'epoch': 0.29}
59
+ {'loss': 1.0041, 'learning_rate': 1.9774033898178668e-05, 'epoch': 0.29}
60
+ {'loss': 1.0733, 'learning_rate': 1.976263983017925e-05, 'epoch': 0.3}
61
+ {'loss': 1.0531, 'learning_rate': 1.9750968964807305e-05, 'epoch': 0.3}
62
+ {'loss': 1.0919, 'learning_rate': 1.9739021632963584e-05, 'epoch': 0.31}
63
+ {'loss': 1.0596, 'learning_rate': 1.9726798173387417e-05, 'epoch': 0.31}
64
+ {'loss': 1.1139, 'learning_rate': 1.97142989326471e-05, 'epoch': 0.31}
65
+ {'loss': 1.0778, 'learning_rate': 1.9701524265130088e-05, 'epoch': 0.32}
66
+ {'loss': 1.0967, 'learning_rate': 1.9688474533032916e-05, 'epoch': 0.32}
67
+ {'loss': 0.9886, 'learning_rate': 1.9675150106350957e-05, 'epoch': 0.33}
68
+ {'loss': 1.0856, 'learning_rate': 1.9661551362867926e-05, 'epoch': 0.33}
69
+ {'loss': 1.1126, 'learning_rate': 1.9647678688145163e-05, 'epoch': 0.34}
70
+ {'loss': 1.0469, 'learning_rate': 1.963353247551069e-05, 'epoch': 0.34}
71
+ {'loss': 1.0468, 'learning_rate': 1.9619113126048086e-05, 'epoch': 0.35}
72
+ {'loss': 1.0714, 'learning_rate': 1.96044210485851e-05, 'epoch': 0.35}
73
+ {'loss': 1.0462, 'learning_rate': 1.958945665968206e-05, 'epoch': 0.36}
74
+ {'loss': 1.0823, 'learning_rate': 1.9574220383620054e-05, 'epoch': 0.36}
75
+ {'loss': 1.0293, 'learning_rate': 1.9558712652388932e-05, 'epoch': 0.37}
76
+ {'loss': 1.0461, 'learning_rate': 1.954293390567501e-05, 'epoch': 0.37}
77
+ {'loss': 1.1083, 'learning_rate': 1.9526884590848646e-05, 'epoch': 0.38}
78
+ {'loss': 1.0561, 'learning_rate': 1.9510565162951538e-05, 'epoch': 0.38}
79
+ {'loss': 1.0468, 'learning_rate': 1.9493976084683814e-05, 'epoch': 0.39}
80
+ {'loss': 1.0881, 'learning_rate': 1.9477117826390934e-05, 'epoch': 0.39}
81
+ {'loss': 1.0578, 'learning_rate': 1.9459990866050337e-05, 'epoch': 0.4}
82
+ {'loss': 1.0839, 'learning_rate': 1.9442595689257898e-05, 'epoch': 0.4}
83
+ {'loss': 1.1076, 'learning_rate': 1.9424932789214158e-05, 'epoch': 0.41}
84
+ {'loss': 1.1003, 'learning_rate': 1.9407002666710334e-05, 'epoch': 0.41}
85
+ {'loss': 1.0066, 'learning_rate': 1.9388805830114132e-05, 'epoch': 0.42}
86
+ {'loss': 1.0444, 'learning_rate': 1.937034279535533e-05, 'epoch': 0.42}
87
+ {'loss': 1.0942, 'learning_rate': 1.9351614085911134e-05, 'epoch': 0.43}
88
+ {'loss': 1.038, 'learning_rate': 1.933262023279137e-05, 'epoch': 0.43}
89
+ {'loss': 1.091, 'learning_rate': 1.9313361774523387e-05, 'epoch': 0.44}
90
+ {'loss': 1.0893, 'learning_rate': 1.929383925713682e-05, 'epoch': 0.44}
91
+ {'loss': 1.1238, 'learning_rate': 1.92740532341481e-05, 'epoch': 0.45}
92
+ {'loss': 1.1062, 'learning_rate': 1.925400426654475e-05, 'epoch': 0.45}
93
+ {'loss': 1.0967, 'learning_rate': 1.9233692922769497e-05, 'epoch': 0.46}
94
+ {'loss': 1.1492, 'learning_rate': 1.921311977870413e-05, 'epoch': 0.46}
95
+ {'loss': 1.0391, 'learning_rate': 1.9192285417653208e-05, 'epoch': 0.47}
96
+ {'loss': 1.0374, 'learning_rate': 1.917119043032749e-05, 'epoch': 0.47}
97
+ {'loss': 1.0515, 'learning_rate': 1.9149835414827193e-05, 'epoch': 0.48}
98
+ {'loss': 1.0428, 'learning_rate': 1.912822097662505e-05, 'epoch': 0.48}
99
+ {'loss': 1.045, 'learning_rate': 1.9106347728549134e-05, 'epoch': 0.49}
100
+ {'loss': 1.0973, 'learning_rate': 1.908421629076547e-05, 'epoch': 0.49}
101
+ {'loss': 1.1027, 'learning_rate': 1.9061827290760466e-05, 'epoch': 0.5}
102
+ {'loss': 1.0764, 'learning_rate': 1.9039181363323128e-05, 'epoch': 0.5}
103
+ {'loss': 1.0589, 'learning_rate': 1.9016279150527044e-05, 'epoch': 0.51}
104
+ {'loss': 1.1008, 'learning_rate': 1.8993121301712194e-05, 'epoch': 0.51}
105
+ {'loss': 1.0672, 'learning_rate': 1.896970847346653e-05, 'epoch': 0.52}
106
+ {'loss': 1.0408, 'learning_rate': 1.8946041329607364e-05, 'epoch': 0.52}
107
+ {'loss': 1.1093, 'learning_rate': 1.892212054116255e-05, 'epoch': 0.53}
108
+ {'loss': 1.0546, 'learning_rate': 1.889794678635145e-05, 'epoch': 0.53}
109
+ {'loss': 1.0904, 'learning_rate': 1.8873520750565716e-05, 'epoch': 0.54}
110
+ {'loss': 1.0795, 'learning_rate': 1.884884312634985e-05, 'epoch': 0.54}
111
+ {'loss': 1.1308, 'learning_rate': 1.8823914613381568e-05, 'epoch': 0.55}
112
+ {'loss': 1.0742, 'learning_rate': 1.8798735918451963e-05, 'epoch': 0.55}
113
+ {'loss': 1.043, 'learning_rate': 1.8773307755445468e-05, 'epoch': 0.56}
114
+ {'loss': 1.1104, 'learning_rate': 1.874763084531961e-05, 'epoch': 0.56}
115
+ {'loss': 1.0683, 'learning_rate': 1.872170591608459e-05, 'epoch': 0.57}
116
+ {'loss': 1.0883, 'learning_rate': 1.86955337027826e-05, 'epoch': 0.57}
117
+ {'loss': 1.0489, 'learning_rate': 1.866911494746702e-05, 'epoch': 0.58}
118
+ {'loss': 1.0997, 'learning_rate': 1.8642450399181373e-05, 'epoch': 0.58}
119
+ {'loss': 1.0673, 'learning_rate': 1.8615540813938063e-05, 'epoch': 0.59}
120
+ {'loss': 1.0418, 'learning_rate': 1.8588386954696972e-05, 'epoch': 0.59}
121
+ {'loss': 1.1213, 'learning_rate': 1.856098959134381e-05, 'epoch': 0.6}
122
+ {'loss': 1.0514, 'learning_rate': 1.8533349500668295e-05, 'epoch': 0.6}
123
+ {'loss': 0.9767, 'learning_rate': 1.850546746634211e-05, 'epoch': 0.61}
124
+ {'loss': 1.1253, 'learning_rate': 1.8477344278896708e-05, 'epoch': 0.61}
125
+ {'loss': 1.1082, 'learning_rate': 1.84489807357009e-05, 'epoch': 0.62}
126
+ {'loss': 1.0326, 'learning_rate': 1.8420377640938204e-05, 'epoch': 0.62}
127
+ {'loss': 1.0417, 'learning_rate': 1.839153580558411e-05, 'epoch': 0.62}
128
+ {'loss': 1.0524, 'learning_rate': 1.8362456047383032e-05, 'epoch': 0.63}
129
+ {'loss': 1.0292, 'learning_rate': 1.833313919082515e-05, 'epoch': 0.63}
130
+ {'loss': 1.0346, 'learning_rate': 1.8303586067123028e-05, 'epoch': 0.64}
131
+ {'loss': 1.0649, 'learning_rate': 1.8273797514188043e-05, 'epoch': 0.64}
132
+ {'loss': 1.0417, 'learning_rate': 1.824377437660663e-05, 'epoch': 0.65}
133
+ {'loss': 1.0865, 'learning_rate': 1.821351750561634e-05, 'epoch': 0.65}
134
+ {'loss': 1.1223, 'learning_rate': 1.818302775908169e-05, 'epoch': 0.66}
135
+ {'loss': 1.0438, 'learning_rate': 1.8152306001469875e-05, 'epoch': 0.66}
136
+ {'loss': 1.0823, 'learning_rate': 1.8121353103826213e-05, 'epoch': 0.67}
137
+ {'loss': 1.1072, 'learning_rate': 1.8090169943749477e-05, 'epoch': 0.67}
138
+ {'loss': 1.0501, 'learning_rate': 1.8058757405367003e-05, 'epoch': 0.68}
139
+ {'loss': 1.0628, 'learning_rate': 1.8027116379309637e-05, 'epoch': 0.68}
140
+ {'loss': 1.0703, 'learning_rate': 1.799524776268646e-05, 'epoch': 0.69}
141
+ {'loss': 1.128, 'learning_rate': 1.796315245905936e-05, 'epoch': 0.69}
142
+ {'loss': 1.0892, 'learning_rate': 1.7930831378417437e-05, 'epoch': 0.7}
143
+ {'loss': 1.0386, 'learning_rate': 1.7898285437151163e-05, 'epoch': 0.7}
144
+ {'loss': 1.0558, 'learning_rate': 1.786551555802643e-05, 'epoch': 0.71}
145
+ {'loss': 1.0661, 'learning_rate': 1.783252267015837e-05, 'epoch': 0.71}
146
+ {'loss': 1.0334, 'learning_rate': 1.779930770898503e-05, 'epoch': 0.72}
147
+ {'loss': 1.0845, 'learning_rate': 1.776587161624083e-05, 'epoch': 0.72}
148
+ {'loss': 1.0598, 'learning_rate': 1.7732215339929874e-05, 'epoch': 0.73}
149
+ {'loss': 1.0262, 'learning_rate': 1.7698339834299064e-05, 'epoch': 0.73}
150
+ {'loss': 1.0697, 'learning_rate': 1.7664246059811058e-05, 'epoch': 0.74}
151
+ {'loss': 1.0381, 'learning_rate': 1.7629934983117025e-05, 'epoch': 0.74}
152
+ {'loss': 1.0635, 'learning_rate': 1.759540757702924e-05, 'epoch': 0.75}
153
+ {'loss': 1.0511, 'learning_rate': 1.7560664820493502e-05, 'epoch': 0.75}
154
+ {'loss': 1.0664, 'learning_rate': 1.7525707698561383e-05, 'epoch': 0.76}
155
+ {'loss': 1.0857, 'learning_rate': 1.7490537202362313e-05, 'epoch': 0.76}
156
+ {'loss': 1.1041, 'learning_rate': 1.7455154329075427e-05, 'epoch': 0.77}
157
+ {'loss': 1.0884, 'learning_rate': 1.741956008190136e-05, 'epoch': 0.77}
158
+ {'loss': 1.0856, 'learning_rate': 1.7383755470033756e-05, 'epoch': 0.78}
159
+ {'loss': 1.092, 'learning_rate': 1.7347741508630673e-05, 'epoch': 0.78}
160
+ {'loss': 1.0648, 'learning_rate': 1.73115192187858e-05, 'epoch': 0.79}
161
+ {'loss': 1.0487, 'learning_rate': 1.7275089627499493e-05, 'epoch': 0.79}
162
+ {'loss': 1.1282, 'learning_rate': 1.7238453767649683e-05, 'epoch': 0.8}
163
+ {'loss': 1.0269, 'learning_rate': 1.720161267796256e-05, 'epoch': 0.8}
164
+ {'loss': 1.0886, 'learning_rate': 1.7164567402983153e-05, 'epoch': 0.81}
165
+ {'loss': 1.0929, 'learning_rate': 1.7127318993045686e-05, 'epoch': 0.81}
166
+ {'loss': 1.0275, 'learning_rate': 1.7089868504243816e-05, 'epoch': 0.82}
167
+ {'loss': 1.0664, 'learning_rate': 1.705221699840069e-05, 'epoch': 0.82}
168
+ {'loss': 1.0425, 'learning_rate': 1.701436554303882e-05, 'epoch': 0.83}
169
+ {'loss': 1.0874, 'learning_rate': 1.6976315211349848e-05, 'epoch': 0.83}
170
+ {'loss': 1.0231, 'learning_rate': 1.6938067082164093e-05, 'epoch': 0.84}
171
+ {'loss': 1.0946, 'learning_rate': 1.6899622239919965e-05, 'epoch': 0.84}
172
+ {'loss': 1.0386, 'learning_rate': 1.6860981774633228e-05, 'epoch': 0.85}
173
+ {'loss': 1.0117, 'learning_rate': 1.6822146781866097e-05, 'epoch': 0.85}
174
+ {'loss': 1.1307, 'learning_rate': 1.6783118362696162e-05, 'epoch': 0.86}
175
+ {'loss': 1.0989, 'learning_rate': 1.6743897623685178e-05, 'epoch': 0.86}
176
+ {'loss': 1.0728, 'learning_rate': 1.6704485676847695e-05, 'epoch': 0.87}
177
+ {'loss': 1.0572, 'learning_rate': 1.666488363961952e-05, 'epoch': 0.87}
178
+ {'loss': 1.085, 'learning_rate': 1.662509263482604e-05, 'epoch': 0.88}
179
+ {'loss': 1.0516, 'learning_rate': 1.658511379065039e-05, 'epoch': 0.88}
180
+ {'loss': 1.06, 'learning_rate': 1.6544948240601453e-05, 'epoch': 0.89}
181
+ {'loss': 1.0361, 'learning_rate': 1.6504597123481737e-05, 'epoch': 0.89}
182
+ {'loss': 1.0125, 'learning_rate': 1.6464061583355088e-05, 'epoch': 0.9}
183
+ {'loss': 1.0785, 'learning_rate': 1.6423342769514227e-05, 'epoch': 0.9}
184
+ {'loss': 1.0889, 'learning_rate': 1.6382441836448203e-05, 'epoch': 0.91}
185
+ {'loss': 1.0746, 'learning_rate': 1.6341359943809626e-05, 'epoch': 0.91}
186
+ {'loss': 1.0962, 'learning_rate': 1.6300098256381807e-05, 'epoch': 0.92}
187
+ {'loss': 1.0326, 'learning_rate': 1.625865794404573e-05, 'epoch': 0.92}
188
+ {'loss': 1.0519, 'learning_rate': 1.621704018174688e-05, 'epoch': 0.92}
189
+ {'loss': 1.0175, 'learning_rate': 1.617524614946192e-05, 'epoch': 0.93}
190
+ {'loss': 1.0873, 'learning_rate': 1.6133277032165264e-05, 'epoch': 0.93}
191
+ {'loss': 1.0447, 'learning_rate': 1.6091134019795447e-05, 'epoch': 0.94}
192
+ {'loss': 1.0371, 'learning_rate': 1.604881830722141e-05, 'epoch': 0.94}
193
+ {'loss': 1.0877, 'learning_rate': 1.600633109420861e-05, 'epoch': 0.95}
194
+ {'loss': 1.0713, 'learning_rate': 1.5963673585385016e-05, 'epoch': 0.95}
195
+ {'loss': 1.0405, 'learning_rate': 1.5920846990206934e-05, 'epoch': 0.96}
196
+ {'loss': 1.0368, 'learning_rate': 1.5877852522924733e-05, 'epoch': 0.96}
197
+ {'loss': 1.1261, 'learning_rate': 1.5834691402548415e-05, 'epoch': 0.97}
198
+ {'loss': 1.0917, 'learning_rate': 1.5791364852813047e-05, 'epoch': 0.97}
199
+ {'loss': 1.1039, 'learning_rate': 1.5747874102144073e-05, 'epoch': 0.98}
200
+ {'loss': 1.0419, 'learning_rate': 1.5704220383622464e-05, 'epoch': 0.98}
201
+ {'loss': 1.0511, 'learning_rate': 1.5660404934949798e-05, 'epoch': 0.99}
202
+ {'loss': 1.0509, 'learning_rate': 1.5616428998413122e-05, 'epoch': 0.99}
203
+ {'loss': 1.1341, 'learning_rate': 1.5572293820849754e-05, 'epoch': 1.0}
204
+ {'loss': 0.8075, 'learning_rate': 1.5528000653611935e-05, 'epoch': 1.0}
205
+ {'loss': 0.7722, 'learning_rate': 1.5483550752531337e-05, 'epoch': 1.01}
206
+ {'loss': 0.7516, 'learning_rate': 1.5438945377883463e-05, 'epoch': 1.01}
207
+ {'loss': 0.7116, 'learning_rate': 1.5394185794351914e-05, 'epoch': 1.02}
208
+ {'loss': 0.7119, 'learning_rate': 1.5349273270992537e-05, 'epoch': 1.02}
209
+ {'loss': 0.7054, 'learning_rate': 1.5304209081197425e-05, 'epoch': 1.03}
210
+ {'loss': 0.7716, 'learning_rate': 1.5258994502658846e-05, 'epoch': 1.03}
211
+ {'loss': 0.7191, 'learning_rate': 1.5213630817332985e-05, 'epoch': 1.04}
212
+ {'loss': 0.7285, 'learning_rate': 1.5168119311403611e-05, 'epoch': 1.04}
213
+ {'loss': 0.7226, 'learning_rate': 1.512246127524561e-05, 'epoch': 1.05}
214
+ {'loss': 0.709, 'learning_rate': 1.50766580033884e-05, 'epoch': 1.05}
215
+ {'loss': 0.7776, 'learning_rate': 1.5030710794479226e-05, 'epoch': 1.06}
216
+ {'loss': 0.7105, 'learning_rate': 1.4984620951246333e-05, 'epoch': 1.06}
217
+ {'loss': 0.7367, 'learning_rate': 1.4938389780462044e-05, 'epoch': 1.07}
218
+ {'loss': 0.7228, 'learning_rate': 1.4892018592905702e-05, 'epoch': 1.07}
219
+ {'loss': 0.7111, 'learning_rate': 1.4845508703326504e-05, 'epoch': 1.08}
220
+ {'loss': 0.696, 'learning_rate': 1.4798861430406221e-05, 'epoch': 1.08}
221
+ {'loss': 0.7074, 'learning_rate': 1.4752078096721827e-05, 'epoch': 1.09}
222
+ {'loss': 0.7417, 'learning_rate': 1.4705160028707976e-05, 'epoch': 1.09}
223
+ {'loss': 0.711, 'learning_rate': 1.4658108556619417e-05, 'epoch': 1.1}
224
+ {'loss': 0.6855, 'learning_rate': 1.461092501449326e-05, 'epoch': 1.1}
225
+ {'loss': 0.7157, 'learning_rate': 1.4563610740111163e-05, 'epoch': 1.11}
226
+ {'loss': 0.6933, 'learning_rate': 1.4516167074961394e-05, 'epoch': 1.11}
227
+ {'loss': 0.6964, 'learning_rate': 1.4468595364200808e-05, 'epoch': 1.12}
228
+ {'loss': 0.745, 'learning_rate': 1.4420896956616698e-05, 'epoch': 1.12}
229
+ {'loss': 0.7293, 'learning_rate': 1.4373073204588556e-05, 'epoch': 1.13}
230
+ {'loss': 0.7146, 'learning_rate': 1.4325125464049725e-05, 'epoch': 1.13}
231
+ {'loss': 0.7126, 'learning_rate': 1.427705509444897e-05, 'epoch': 1.14}
232
+ {'loss': 0.7188, 'learning_rate': 1.4228863458711915e-05, 'epoch': 1.14}
233
+ {'loss': 0.7307, 'learning_rate': 1.4180551923202406e-05, 'epoch': 1.15}
234
+ {'loss': 0.708, 'learning_rate': 1.4132121857683782e-05, 'epoch': 1.15}
235
+ {'loss': 0.7049, 'learning_rate': 1.4083574635280029e-05, 'epoch': 1.16}
236
+ {'loss': 0.7024, 'learning_rate': 1.403491163243684e-05, 'epoch': 1.16}
237
+ {'loss': 0.7586, 'learning_rate': 1.3986134228882607e-05, 'epoch': 1.17}
238
+ {'loss': 0.74, 'learning_rate': 1.3937243807589291e-05, 'epoch': 1.17}
239
+ {'loss': 0.6969, 'learning_rate': 1.388824175473321e-05, 'epoch': 1.18}
240
+ {'loss': 0.7288, 'learning_rate': 1.383912945965574e-05, 'epoch': 1.18}
241
+ {'loss': 0.719, 'learning_rate': 1.3789908314823932e-05, 'epoch': 1.19}
242
+ {'loss': 0.7207, 'learning_rate': 1.3740579715791017e-05, 'epoch': 1.19}
243
+ {'loss': 0.7301, 'learning_rate': 1.3691145061156843e-05, 'epoch': 1.2}
244
+ {'loss': 0.7267, 'learning_rate': 1.3641605752528225e-05, 'epoch': 1.2}
245
+ {'loss': 0.7195, 'learning_rate': 1.3591963194479198e-05, 'epoch': 1.21}
246
+ {'loss': 0.7118, 'learning_rate': 1.3542218794511212e-05, 'epoch': 1.21}
247
+ {'loss': 0.71, 'learning_rate': 1.3492373963013199e-05, 'epoch': 1.22}
248
+ {'loss': 0.7399, 'learning_rate': 1.3442430113221602e-05, 'epoch': 1.22}
249
+ {'loss': 0.7077, 'learning_rate': 1.3392388661180303e-05, 'epoch': 1.23}
250
+ {'loss': 0.7209, 'learning_rate': 1.3342251025700474e-05, 'epoch': 1.23}
251
+ {'loss': 0.7205, 'learning_rate': 1.3292018628320346e-05, 'epoch': 1.23}
252
+ {'loss': 0.7097, 'learning_rate': 1.3241692893264909e-05, 'epoch': 1.24}
253
+ {'loss': 0.7083, 'learning_rate': 1.3191275247405525e-05, 'epoch': 1.24}
254
+ {'loss': 0.7023, 'learning_rate': 1.314076712021949e-05, 'epoch': 1.25}
255
+ {'loss': 0.6789, 'learning_rate': 1.3090169943749475e-05, 'epoch': 1.25}
256
+ {'loss': 0.6707, 'learning_rate': 1.3039485152562951e-05, 'epoch': 1.26}
257
+ {'loss': 0.7348, 'learning_rate': 1.2988714183711504e-05, 'epoch': 1.26}
258
+ {'loss': 0.7231, 'learning_rate': 1.2937858476690089e-05, 'epoch': 1.27}
259
+ {'loss': 0.7394, 'learning_rate': 1.2886919473396212e-05, 'epoch': 1.27}
260
+ {'loss': 0.6958, 'learning_rate': 1.2835898618089064e-05, 'epoch': 1.28}
261
+ {'loss': 0.7074, 'learning_rate': 1.2784797357348562e-05, 'epoch': 1.28}
262
+ {'loss': 0.6826, 'learning_rate': 1.2733617140034329e-05, 'epoch': 1.29}
263
+ {'loss': 0.6889, 'learning_rate': 1.268235941724463e-05, 'epoch': 1.29}
264
+ {'loss': 0.7218, 'learning_rate': 1.2631025642275212e-05, 'epoch': 1.3}
265
+ {'loss': 0.6902, 'learning_rate': 1.257961727057812e-05, 'epoch': 1.3}
266
+ {'loss': 0.7017, 'learning_rate': 1.2528135759720403e-05, 'epoch': 1.31}
267
+ {'loss': 0.7281, 'learning_rate': 1.2476582569342819e-05, 'epoch': 1.31}
268
+ {'loss': 0.7372, 'learning_rate': 1.2424959161118425e-05, 'epoch': 1.32}
269
+ {'loss': 0.6928, 'learning_rate': 1.2373266998711152e-05, 'epoch': 1.32}
270
+ {'loss': 0.7273, 'learning_rate': 1.232150754773429e-05, 'epoch': 1.33}
271
+ {'loss': 0.7307, 'learning_rate': 1.2269682275708951e-05, 'epoch': 1.33}
272
+ {'loss': 0.7126, 'learning_rate': 1.2217792652022452e-05, 'epoch': 1.34}
273
+ {'loss': 0.6547, 'learning_rate': 1.2165840147886656e-05, 'epoch': 1.34}
274
+ {'loss': 0.724, 'learning_rate': 1.2113826236296245e-05, 'epoch': 1.35}
275
+ {'loss': 0.7313, 'learning_rate': 1.2061752391986982e-05, 'epoch': 1.35}
276
+ {'loss': 0.6745, 'learning_rate': 1.2009620091393885e-05, 'epoch': 1.36}
277
+ {'loss': 0.744, 'learning_rate': 1.1957430812609361e-05, 'epoch': 1.36}
278
+ {'loss': 0.6731, 'learning_rate': 1.1905186035341304e-05, 'epoch': 1.37}
279
+ {'loss': 0.6831, 'learning_rate': 1.1852887240871145e-05, 'epoch': 1.37}
280
+ {'loss': 0.6882, 'learning_rate': 1.1800535912011846e-05, 'epoch': 1.38}
281
+ {'loss': 0.6984, 'learning_rate': 1.1748133533065864e-05, 'epoch': 1.38}
282
+ {'loss': 0.7139, 'learning_rate': 1.1695681589783065e-05, 'epoch': 1.39}
283
+ {'loss': 0.667, 'learning_rate': 1.1643181569318596e-05, 'epoch': 1.39}
284
+ {'loss': 0.7241, 'learning_rate': 1.1590634960190722e-05, 'epoch': 1.4}
285
+ {'loss': 0.7251, 'learning_rate': 1.1538043252238629e-05, 'epoch': 1.4}
286
+ {'loss': 0.7327, 'learning_rate': 1.1485407936580169e-05, 'epoch': 1.41}
287
+ {'loss': 0.714, 'learning_rate': 1.1432730505569597e-05, 'epoch': 1.41}
288
+ {'loss': 0.7661, 'learning_rate': 1.1380012452755259e-05, 'epoch': 1.42}
289
+ {'loss': 0.6702, 'learning_rate': 1.1327255272837221e-05, 'epoch': 1.42}
290
+ {'loss': 0.7246, 'learning_rate': 1.1274460461624925e-05, 'epoch': 1.43}
291
+ {'loss': 0.7415, 'learning_rate': 1.1221629515994754e-05, 'epoch': 1.43}
292
+ {'loss': 0.6757, 'learning_rate': 1.1168763933847608e-05, 'epoch': 1.44}
293
+ {'loss': 0.727, 'learning_rate': 1.1115865214066414e-05, 'epoch': 1.44}
294
+ {'loss': 0.7603, 'learning_rate': 1.1062934856473655e-05, 'epoch': 1.45}
295
+ {'loss': 0.7167, 'learning_rate': 1.1009974361788822e-05, 'epoch': 1.45}
296
+ {'loss': 0.6938, 'learning_rate': 1.095698523158588e-05, 'epoch': 1.46}
297
+ {'loss': 0.6896, 'learning_rate': 1.0903968968250682e-05, 'epoch': 1.46}
298
+ {'loss': 0.729, 'learning_rate': 1.085092707493839e-05, 'epoch': 1.47}
299
+ {'loss': 0.7105, 'learning_rate': 1.0797861055530832e-05, 'epoch': 1.47}
300
+ {'loss': 0.7322, 'learning_rate': 1.0744772414593889e-05, 'epoch': 1.48}
301
+ {'loss': 0.6874, 'learning_rate': 1.0691662657334815e-05, 'epoch': 1.48}
302
+ {'loss': 0.7149, 'learning_rate': 1.0638533289559574e-05, 'epoch': 1.49}
303
+ {'loss': 0.7047, 'learning_rate': 1.0585385817630137e-05, 'epoch': 1.49}
304
+ {'loss': 0.7358, 'learning_rate': 1.0532221748421786e-05, 'epoch': 1.5}
305
+ {'loss': 0.7614, 'learning_rate': 1.047904258928037e-05, 'epoch': 1.5}
306
+ {'loss': 0.7245, 'learning_rate': 1.0425849847979586e-05, 'epoch': 1.51}
307
+ {'loss': 0.793, 'learning_rate': 1.0372645032678215e-05, 'epoch': 1.51}
308
+ {'loss': 0.7326, 'learning_rate': 1.031942965187738e-05, 'epoch': 1.52}
309
+ {'loss': 0.7414, 'learning_rate': 1.026620521437775e-05, 'epoch': 1.52}
310
+ {'loss': 0.6551, 'learning_rate': 1.0212973229236787e-05, 'epoch': 1.53}
311
+ {'loss': 0.75, 'learning_rate': 1.0159735205725949e-05, 'epoch': 1.53}
312
+ {'loss': 0.676, 'learning_rate': 1.0106492653287893e-05, 'epoch': 1.54}
313
+ {'loss': 0.6997, 'learning_rate': 1.0053247081493684e-05, 'epoch': 1.54}
314
+ {'loss': 0.723, 'learning_rate': 1e-05, 'epoch': 1.54}
315
+ {'loss': 0.7028, 'learning_rate': 9.946752918506319e-06, 'epoch': 1.55}
316
+ {'loss': 0.7191, 'learning_rate': 9.893507346712112e-06, 'epoch': 1.55}
317
+ {'loss': 0.7544, 'learning_rate': 9.840264794274053e-06, 'epoch': 1.56}
318
+ {'loss': 0.7185, 'learning_rate': 9.787026770763216e-06, 'epoch': 1.56}
319
+ {'loss': 0.7068, 'learning_rate': 9.733794785622254e-06, 'epoch': 1.57}
320
+ {'loss': 0.7022, 'learning_rate': 9.680570348122626e-06, 'epoch': 1.57}
321
+ {'loss': 0.6984, 'learning_rate': 9.627354967321785e-06, 'epoch': 1.58}
322
+ {'loss': 0.7159, 'learning_rate': 9.574150152020415e-06, 'epoch': 1.58}
323
+ {'loss': 0.6666, 'learning_rate': 9.520957410719632e-06, 'epoch': 1.59}
324
+ {'loss': 0.7444, 'learning_rate': 9.467778251578217e-06, 'epoch': 1.59}
325
+ {'loss': 0.7283, 'learning_rate': 9.414614182369862e-06, 'epoch': 1.6}
326
+ {'loss': 0.6926, 'learning_rate': 9.361466710440428e-06, 'epoch': 1.6}
327
+ {'loss': 0.669, 'learning_rate': 9.308337342665188e-06, 'epoch': 1.61}
328
+ {'loss': 0.6912, 'learning_rate': 9.255227585406116e-06, 'epoch': 1.61}
329
+ {'loss': 0.71, 'learning_rate': 9.202138944469168e-06, 'epoch': 1.62}
330
+ {'loss': 0.7034, 'learning_rate': 9.149072925061614e-06, 'epoch': 1.62}
331
+ {'loss': 0.7049, 'learning_rate': 9.096031031749321e-06, 'epoch': 1.63}
332
+ {'loss': 0.6991, 'learning_rate': 9.043014768414125e-06, 'epoch': 1.63}
333
+ {'loss': 0.6585, 'learning_rate': 8.99002563821118e-06, 'epoch': 1.64}
334
+ {'loss': 0.6416, 'learning_rate': 8.937065143526349e-06, 'epoch': 1.64}
335
+ {'loss': 0.7235, 'learning_rate': 8.884134785933588e-06, 'epoch': 1.65}
336
+ {'loss': 0.7031, 'learning_rate': 8.831236066152397e-06, 'epoch': 1.65}
337
+ {'loss': 0.6934, 'learning_rate': 8.778370484005245e-06, 'epoch': 1.66}
338
+ {'loss': 0.7127, 'learning_rate': 8.725539538375078e-06, 'epoch': 1.66}
339
+ {'loss': 0.6487, 'learning_rate': 8.672744727162782e-06, 'epoch': 1.67}
340
+ {'loss': 0.7599, 'learning_rate': 8.619987547244746e-06, 'epoch': 1.67}
341
+ {'loss': 0.6931, 'learning_rate': 8.567269494430404e-06, 'epoch': 1.68}
342
+ {'loss': 0.6817, 'learning_rate': 8.514592063419833e-06, 'epoch': 1.68}
343
+ {'loss': 0.6913, 'learning_rate': 8.461956747761375e-06, 'epoch': 1.69}
344
+ {'loss': 0.7378, 'learning_rate': 8.409365039809282e-06, 'epoch': 1.69}
345
+ {'loss': 0.7299, 'learning_rate': 8.356818430681409e-06, 'epoch': 1.7}
346
+ {'loss': 0.6989, 'learning_rate': 8.304318410216937e-06, 'epoch': 1.7}
347
+ {'loss': 0.7122, 'learning_rate': 8.251866466934137e-06, 'epoch': 1.71}
348
+ {'loss': 0.7174, 'learning_rate': 8.199464087988158e-06, 'epoch': 1.71}
349
+ {'loss': 0.758, 'learning_rate': 8.147112759128859e-06, 'epoch': 1.72}
350
+ {'loss': 0.7127, 'learning_rate': 8.094813964658698e-06, 'epoch': 1.72}
351
+ {'loss': 0.7078, 'learning_rate': 8.042569187390642e-06, 'epoch': 1.73}
352
+ {'loss': 0.739, 'learning_rate': 7.990379908606118e-06, 'epoch': 1.73}
353
+ {'loss': 0.7003, 'learning_rate': 7.938247608013021e-06, 'epoch': 1.74}
354
+ {'loss': 0.6949, 'learning_rate': 7.886173763703757e-06, 'epoch': 1.74}
355
+ {'loss': 0.7243, 'learning_rate': 7.834159852113347e-06, 'epoch': 1.75}
356
+ {'loss': 0.6921, 'learning_rate': 7.78220734797755e-06, 'epoch': 1.75}
357
+ {'loss': 0.7427, 'learning_rate': 7.73031772429105e-06, 'epoch': 1.76}
358
+ {'loss': 0.7168, 'learning_rate': 7.678492452265713e-06, 'epoch': 1.76}
359
+ {'loss': 0.7258, 'learning_rate': 7.626733001288852e-06, 'epoch': 1.77}
360
+ {'loss': 0.7348, 'learning_rate': 7.575040838881578e-06, 'epoch': 1.77}
361
+ {'loss': 0.7206, 'learning_rate': 7.523417430657186e-06, 'epoch': 1.78}
362
+ {'loss': 0.7033, 'learning_rate': 7.471864240279598e-06, 'epoch': 1.78}
363
+ {'loss': 0.7293, 'learning_rate': 7.420382729421883e-06, 'epoch': 1.79}
364
+ {'loss': 0.6891, 'learning_rate': 7.368974357724789e-06, 'epoch': 1.79}
365
+ {'loss': 0.6906, 'learning_rate': 7.317640582755373e-06, 'epoch': 1.8}
366
+ {'loss': 0.718, 'learning_rate': 7.266382859965673e-06, 'epoch': 1.8}
367
+ {'loss': 0.7093, 'learning_rate': 7.2152026426514395e-06, 'epoch': 1.81}
368
+ {'loss': 0.7573, 'learning_rate': 7.164101381910939e-06, 'epoch': 1.81}
369
+ {'loss': 0.7401, 'learning_rate': 7.113080526603793e-06, 'epoch': 1.82}
370
+ {'loss': 0.7497, 'learning_rate': 7.062141523309918e-06, 'epoch': 1.82}
371
+ {'loss': 0.6971, 'learning_rate': 7.011285816288496e-06, 'epoch': 1.83}
372
+ {'loss': 0.6833, 'learning_rate': 6.96051484743705e-06, 'epoch': 1.83}
373
+ {'loss': 0.7011, 'learning_rate': 6.909830056250527e-06, 'epoch': 1.84}
374
+ {'loss': 0.6817, 'learning_rate': 6.859232879780515e-06, 'epoch': 1.84}
375
+ {'loss': 0.7151, 'learning_rate': 6.8087247525944745e-06, 'epoch': 1.85}
376
+ {'loss': 0.7414, 'learning_rate': 6.758307106735094e-06, 'epoch': 1.85}
377
+ {'loss': 0.6849, 'learning_rate': 6.707981371679657e-06, 'epoch': 1.85}
378
+ {'loss': 0.7354, 'learning_rate': 6.657748974299529e-06, 'epoch': 1.86}
379
+ {'loss': 0.7282, 'learning_rate': 6.607611338819697e-06, 'epoch': 1.86}
380
+ {'loss': 0.7203, 'learning_rate': 6.557569886778401e-06, 'epoch': 1.87}
381
+ {'loss': 0.694, 'learning_rate': 6.507626036986804e-06, 'epoch': 1.87}
382
+ {'loss': 0.6511, 'learning_rate': 6.457781205488791e-06, 'epoch': 1.88}
383
+ {'loss': 0.7237, 'learning_rate': 6.408036805520801e-06, 'epoch': 1.88}
384
+ {'loss': 0.6414, 'learning_rate': 6.358394247471779e-06, 'epoch': 1.89}
385
+ {'loss': 0.7242, 'learning_rate': 6.308854938843161e-06, 'epoch': 1.89}
386
+ {'loss': 0.7004, 'learning_rate': 6.259420284208987e-06, 'epoch': 1.9}
387
+ {'loss': 0.6722, 'learning_rate': 6.210091685176067e-06, 'epoch': 1.9}
388
+ {'loss': 0.7137, 'learning_rate': 6.160870540344261e-06, 'epoch': 1.91}
389
+ {'loss': 0.6998, 'learning_rate': 6.111758245266795e-06, 'epoch': 1.91}
390
+ {'loss': 0.7149, 'learning_rate': 6.0627561924107145e-06, 'epoch': 1.92}
391
+ {'loss': 0.7787, 'learning_rate': 6.013865771117394e-06, 'epoch': 1.92}
392
+ {'loss': 0.7272, 'learning_rate': 5.965088367563162e-06, 'epoch': 1.93}
393
+ {'loss': 0.7177, 'learning_rate': 5.916425364719975e-06, 'epoch': 1.93}
394
+ {'loss': 0.6835, 'learning_rate': 5.867878142316221e-06, 'epoch': 1.94}
395
+ {'loss': 0.6968, 'learning_rate': 5.8194480767976e-06, 'epoch': 1.94}
396
+ {'loss': 0.7083, 'learning_rate': 5.7711365412880895e-06, 'epoch': 1.95}
397
+ {'loss': 0.7044, 'learning_rate': 5.7229449055510335e-06, 'epoch': 1.95}
398
+ {'loss': 0.726, 'learning_rate': 5.674874535950279e-06, 'epoch': 1.96}
399
+ {'loss': 0.7067, 'learning_rate': 5.626926795411447e-06, 'epoch': 1.96}
400
+ {'loss': 0.7142, 'learning_rate': 5.579103043383305e-06, 'epoch': 1.97}
401
+ {'loss': 0.683, 'learning_rate': 5.531404635799191e-06, 'epoch': 1.97}
402
+ {'loss': 0.7678, 'learning_rate': 5.4838329250386076e-06, 'epoch': 1.98}
403
+ {'loss': 0.7412, 'learning_rate': 5.436389259888841e-06, 'epoch': 1.98}
404
+ {'loss': 0.6633, 'learning_rate': 5.38907498550674e-06, 'epoch': 1.99}
405
+ {'loss': 0.7275, 'learning_rate': 5.341891443380585e-06, 'epoch': 1.99}
406
+ {'loss': 0.7442, 'learning_rate': 5.294839971292026e-06, 'epoch': 2.0}
407
+ {'loss': 0.5863, 'learning_rate': 5.247921903278177e-06, 'epoch': 2.0}
408
+ {'loss': 0.5114, 'learning_rate': 5.20113856959378e-06, 'epoch': 2.01}
409
+ {'loss': 0.4919, 'learning_rate': 5.1544912966735e-06, 'epoch': 2.01}
410
+ {'loss': 0.4947, 'learning_rate': 5.1079814070943e-06, 'epoch': 2.02}
411
+ {'loss': 0.4232, 'learning_rate': 5.06161021953796e-06, 'epoch': 2.02}
412
+ {'loss': 0.4932, 'learning_rate': 5.015379048753669e-06, 'epoch': 2.03}
413
+ {'loss': 0.4826, 'learning_rate': 4.9692892055207784e-06, 'epoch': 2.03}
414
+ {'loss': 0.4494, 'learning_rate': 4.923341996611604e-06, 'epoch': 2.04}
415
+ {'loss': 0.4591, 'learning_rate': 4.877538724754392e-06, 'epoch': 2.04}
416
+ {'loss': 0.4472, 'learning_rate': 4.831880688596392e-06, 'epoch': 2.05}
417
+ {'loss': 0.4529, 'learning_rate': 4.7863691826670146e-06, 'epoch': 2.05}
418
+ {'loss': 0.4585, 'learning_rate': 4.741005497341154e-06, 'epoch': 2.06}
419
+ {'loss': 0.4115, 'learning_rate': 4.695790918802577e-06, 'epoch': 2.06}
420
+ {'loss': 0.4276, 'learning_rate': 4.650726729007465e-06, 'epoch': 2.07}
421
+ {'loss': 0.4427, 'learning_rate': 4.605814205648087e-06, 'epoch': 2.07}
422
+ {'loss': 0.4245, 'learning_rate': 4.56105462211654e-06, 'epoch': 2.08}
423
+ {'loss': 0.422, 'learning_rate': 4.516449247468666e-06, 'epoch': 2.08}
424
+ {'loss': 0.4592, 'learning_rate': 4.4719993463880695e-06, 'epoch': 2.09}
425
+ {'loss': 0.4255, 'learning_rate': 4.427706179150247e-06, 'epoch': 2.09}
426
+ {'loss': 0.4619, 'learning_rate': 4.383571001586883e-06, 'epoch': 2.1}
427
+ {'loss': 0.4163, 'learning_rate': 4.339595065050206e-06, 'epoch': 2.1}
428
+ {'loss': 0.4294, 'learning_rate': 4.29577961637754e-06, 'epoch': 2.11}
429
+ {'loss': 0.4463, 'learning_rate': 4.2521258978559324e-06, 'epoch': 2.11}
430
+ {'loss': 0.4894, 'learning_rate': 4.208635147186956e-06, 'epoch': 2.12}
431
+ {'loss': 0.4288, 'learning_rate': 4.165308597451586e-06, 'epoch': 2.12}
432
+ {'loss': 0.4102, 'learning_rate': 4.12214747707527e-06, 'epoch': 2.13}
433
+ {'loss': 0.423, 'learning_rate': 4.079153009793068e-06, 'epoch': 2.13}
434
+ {'loss': 0.487, 'learning_rate': 4.036326414614985e-06, 'epoch': 2.14}
435
+ {'loss': 0.4535, 'learning_rate': 3.99366890579139e-06, 'epoch': 2.14}
436
+ {'loss': 0.4487, 'learning_rate': 3.951181692778594e-06, 'epoch': 2.15}
437
+ {'loss': 0.4521, 'learning_rate': 3.908865980204555e-06, 'epoch': 2.15}
438
+ {'loss': 0.463, 'learning_rate': 3.86672296783474e-06, 'epoch': 2.15}
439
+ {'loss': 0.4689, 'learning_rate': 3.824753850538082e-06, 'epoch': 2.16}
440
+ {'loss': 0.4369, 'learning_rate': 3.782959818253126e-06, 'epoch': 2.16}
441
+ {'loss': 0.4343, 'learning_rate': 3.741342055954269e-06, 'epoch': 2.17}
442
+ {'loss': 0.4261, 'learning_rate': 3.699901743618194e-06, 'epoch': 2.17}
443
+ {'loss': 0.4125, 'learning_rate': 3.658640056190378e-06, 'epoch': 2.18}
444
+ {'loss': 0.3918, 'learning_rate': 3.617558163551802e-06, 'epoch': 2.18}
445
+ {'loss': 0.4519, 'learning_rate': 3.576657230485775e-06, 'epoch': 2.19}
446
+ {'loss': 0.3847, 'learning_rate': 3.5359384166449185e-06, 'epoch': 2.19}
447
+ {'loss': 0.4199, 'learning_rate': 3.4954028765182633e-06, 'epoch': 2.2}
448
+ {'loss': 0.4449, 'learning_rate': 3.4550517593985512e-06, 'epoch': 2.2}
449
+ {'loss': 0.4275, 'learning_rate': 3.414886209349615e-06, 'epoch': 2.21}
450
+ {'loss': 0.4564, 'learning_rate': 3.3749073651739594e-06, 'epoch': 2.21}
451
+ {'loss': 0.4253, 'learning_rate': 3.3351163603804805e-06, 'epoch': 2.22}
452
+ {'loss': 0.4366, 'learning_rate': 3.2955143231523067e-06, 'epoch': 2.22}
453
+ {'loss': 0.4718, 'learning_rate': 3.2561023763148237e-06, 'epoch': 2.23}
454
+ {'loss': 0.4429, 'learning_rate': 3.216881637303839e-06, 'epoch': 2.23}
455
+ {'loss': 0.4214, 'learning_rate': 3.177853218133905e-06, 'epoch': 2.24}
456
+ {'loss': 0.4234, 'learning_rate': 3.1390182253667745e-06, 'epoch': 2.24}
457
+ {'loss': 0.4365, 'learning_rate': 3.100377760080041e-06, 'epoch': 2.25}
458
+ {'loss': 0.4444, 'learning_rate': 3.0619329178359103e-06, 'epoch': 2.25}
459
+ {'loss': 0.4314, 'learning_rate': 3.023684788650154e-06, 'epoch': 2.26}
460
+ {'loss': 0.4395, 'learning_rate': 2.985634456961184e-06, 'epoch': 2.26}
461
+ {'loss': 0.4851, 'learning_rate': 2.947783001599315e-06, 'epoch': 2.27}
462
+ {'loss': 0.3633, 'learning_rate': 2.9101314957561864e-06, 'epoch': 2.27}
463
+ {'loss': 0.432, 'learning_rate': 2.8726810069543156e-06, 'epoch': 2.28}
464
+ {'loss': 0.4671, 'learning_rate': 2.8354325970168483e-06, 'epoch': 2.28}
465
+ {'loss': 0.4615, 'learning_rate': 2.7983873220374415e-06, 'epoch': 2.29}
466
+ {'loss': 0.4466, 'learning_rate': 2.7615462323503186e-06, 'epoch': 2.29}
467
+ {'loss': 0.458, 'learning_rate': 2.724910372500508e-06, 'epoch': 2.3}
468
+ {'loss': 0.4213, 'learning_rate': 2.6884807812142043e-06, 'epoch': 2.3}
469
+ {'loss': 0.4517, 'learning_rate': 2.6522584913693295e-06, 'epoch': 2.31}
470
+ {'loss': 0.4105, 'learning_rate': 2.616244529966244e-06, 'epoch': 2.31}
471
+ {'loss': 0.4236, 'learning_rate': 2.5804399180986417e-06, 'epoch': 2.32}
472
+ {'loss': 0.4245, 'learning_rate': 2.544845670924575e-06, 'epoch': 2.32}
473
+ {'loss': 0.4318, 'learning_rate': 2.509462797637693e-06, 'epoch': 2.33}
474
+ {'loss': 0.3908, 'learning_rate': 2.4742923014386154e-06, 'epoch': 2.33}
475
+ {'loss': 0.4559, 'learning_rate': 2.4393351795065023e-06, 'epoch': 2.34}
476
+ {'loss': 0.4862, 'learning_rate': 2.4045924229707663e-06, 'epoch': 2.34}
477
+ {'loss': 0.4139, 'learning_rate': 2.3700650168829765e-06, 'epoch': 2.35}
478
+ {'loss': 0.4393, 'learning_rate': 2.3357539401889438e-06, 'epoch': 2.35}
479
+ {'loss': 0.4537, 'learning_rate': 2.3016601657009364e-06, 'epoch': 2.36}
480
+ {'loss': 0.4239, 'learning_rate': 2.2677846600701305e-06, 'epoch': 2.36}
481
+ {'loss': 0.4312, 'learning_rate': 2.234128383759174e-06, 'epoch': 2.37}
482
+ {'loss': 0.4238, 'learning_rate': 2.2006922910149743e-06, 'epoch': 2.37}
483
+ {'loss': 0.4689, 'learning_rate': 2.167477329841633e-06, 'epoch': 2.38}
484
+ {'loss': 0.4004, 'learning_rate': 2.1344844419735757e-06, 'epoch': 2.38}
485
+ {'loss': 0.4577, 'learning_rate': 2.101714562848841e-06, 'epoch': 2.39}
486
+ {'loss': 0.4204, 'learning_rate': 2.069168621582567e-06, 'epoch': 2.39}
487
+ {'loss': 0.4826, 'learning_rate': 2.0368475409406396e-06, 'epoch': 2.4}
488
+ {'loss': 0.4636, 'learning_rate': 2.004752237313544e-06, 'epoch': 2.4}
489
+ {'loss': 0.4174, 'learning_rate': 1.972883620690366e-06, 'epoch': 2.41}
490
+ {'loss': 0.4311, 'learning_rate': 1.9412425946329994e-06, 'epoch': 2.41}
491
+ {'loss': 0.4239, 'learning_rate': 1.9098300562505266e-06, 'epoch': 2.42}
492
+ {'loss': 0.4125, 'learning_rate': 1.8786468961737902e-06, 'epoch': 2.42}
493
+ {'loss': 0.4474, 'learning_rate': 1.8476939985301257e-06, 'epoch': 2.43}
494
+ {'loss': 0.445, 'learning_rate': 1.81697224091831e-06, 'epoch': 2.43}
495
+ {'loss': 0.4162, 'learning_rate': 1.7864824943836633e-06, 'epoch': 2.44}
496
+ {'loss': 0.4416, 'learning_rate': 1.7562256233933717e-06, 'epoch': 2.44}
497
+ {'loss': 0.4212, 'learning_rate': 1.7262024858119597e-06, 'epoch': 2.45}
498
+ {'loss': 0.4356, 'learning_rate': 1.6964139328769736e-06, 'epoch': 2.45}
499
+ {'loss': 0.4489, 'learning_rate': 1.6668608091748495e-06, 'epoch': 2.46}
500
+ {'loss': 0.4549, 'learning_rate': 1.637543952616969e-06, 'epoch': 2.46}
501
+ {'loss': 0.4131, 'learning_rate': 1.6084641944158918e-06, 'epoch': 2.46}
502
+ {'loss': 0.4196, 'learning_rate': 1.5796223590617987e-06, 'epoch': 2.47}
503
+ {'loss': 0.4443, 'learning_rate': 1.5510192642991073e-06, 'epoch': 2.47}
504
+ {'loss': 0.4087, 'learning_rate': 1.522655721103291e-06, 'epoch': 2.48}
505
+ {'loss': 0.4409, 'learning_rate': 1.494532533657893e-06, 'epoch': 2.48}
506
+ {'loss': 0.407, 'learning_rate': 1.4666504993317089e-06, 'epoch': 2.49}
507
+ {'loss': 0.4481, 'learning_rate': 1.4390104086561886e-06, 'epoch': 2.49}
508
+ {'loss': 0.4625, 'learning_rate': 1.4116130453030296e-06, 'epoch': 2.5}
509
+ {'loss': 0.4363, 'learning_rate': 1.3844591860619382e-06, 'epoch': 2.5}
510
+ {'loss': 0.4298, 'learning_rate': 1.3575496008186307e-06, 'epoch': 2.51}
511
+ {'loss': 0.405, 'learning_rate': 1.330885052532981e-06, 'epoch': 2.51}
512
+ {'loss': 0.4165, 'learning_rate': 1.3044662972174005e-06, 'epoch': 2.52}
513
+ {'loss': 0.4492, 'learning_rate': 1.2782940839154113e-06, 'epoch': 2.52}
514
+ {'loss': 0.4582, 'learning_rate': 1.2523691546803872e-06, 'epoch': 2.53}
515
+ {'loss': 0.44, 'learning_rate': 1.2266922445545348e-06, 'epoch': 2.53}
516
+ {'loss': 0.4304, 'learning_rate': 1.201264081548038e-06, 'epoch': 2.54}
517
+ {'loss': 0.4966, 'learning_rate': 1.176085386618434e-06, 'epoch': 2.54}
518
+ {'loss': 0.3895, 'learning_rate': 1.151156873650151e-06, 'epoch': 2.55}
519
+ {'loss': 0.4196, 'learning_rate': 1.1264792494342858e-06, 'epoch': 2.55}
520
+ {'loss': 0.4984, 'learning_rate': 1.1020532136485517e-06, 'epoch': 2.56}
521
+ {'loss': 0.4391, 'learning_rate': 1.0778794588374542e-06, 'epoch': 2.56}
522
+ {'loss': 0.4464, 'learning_rate': 1.0539586703926396e-06, 'epoch': 2.57}
523
+ {'loss': 0.3909, 'learning_rate': 1.0302915265334722e-06, 'epoch': 2.57}
524
+ {'loss': 0.4732, 'learning_rate': 1.0068786982878087e-06, 'epoch': 2.58}
525
+ {'loss': 0.4233, 'learning_rate': 9.837208494729567e-07, 'epoch': 2.58}
526
+ {'loss': 0.3783, 'learning_rate': 9.608186366768746e-07, 'epoch': 2.59}
527
+ {'loss': 0.4481, 'learning_rate': 9.381727092395365e-07, 'epoch': 2.59}
528
+ {'loss': 0.3971, 'learning_rate': 9.157837092345334e-07, 'epoch': 2.6}
529
+ {'loss': 0.4148, 'learning_rate': 8.936522714508678e-07, 'epoch': 2.6}
530
+ {'loss': 0.4521, 'learning_rate': 8.71779023374949e-07, 'epoch': 2.61}
531
+ {'loss': 0.4385, 'learning_rate': 8.501645851728091e-07, 'epoch': 2.61}
532
+ {'loss': 0.45, 'learning_rate': 8.28809569672514e-07, 'epoch': 2.62}
533
+ {'loss': 0.4451, 'learning_rate': 8.077145823467924e-07, 'epoch': 2.62}
534
+ {'loss': 0.422, 'learning_rate': 7.868802212958704e-07, 'epoch': 2.63}
535
+ {'loss': 0.4169, 'learning_rate': 7.663070772305081e-07, 'epoch': 2.63}
536
+ {'loss': 0.4027, 'learning_rate': 7.459957334552526e-07, 'epoch': 2.64}
537
+ {'loss': 0.4028, 'learning_rate': 7.259467658519026e-07, 'epoch': 2.64}
538
+ {'loss': 0.4596, 'learning_rate': 7.061607428631823e-07, 'epoch': 2.65}
539
+ {'loss': 0.4284, 'learning_rate': 6.866382254766158e-07, 'epoch': 2.65}
540
+ {'loss': 0.4251, 'learning_rate': 6.673797672086335e-07, 'epoch': 2.66}
541
+ {'loss': 0.4133, 'learning_rate': 6.483859140888648e-07, 'epoch': 2.66}
542
+ {'loss': 0.4055, 'learning_rate': 6.296572046446725e-07, 'epoch': 2.67}
543
+ {'loss': 0.4299, 'learning_rate': 6.111941698858681e-07, 'epoch': 2.67}
544
+ {'loss': 0.4764, 'learning_rate': 5.929973332896677e-07, 'epoch': 2.68}
545
+ {'loss': 0.4054, 'learning_rate': 5.750672107858435e-07, 'epoch': 2.68}
546
+ {'loss': 0.4513, 'learning_rate': 5.574043107421023e-07, 'epoch': 2.69}
547
+ {'loss': 0.415, 'learning_rate': 5.400091339496638e-07, 'epoch': 2.69}
548
+ {'loss': 0.4152, 'learning_rate': 5.228821736090684e-07, 'epoch': 2.7}
549
+ {'loss': 0.4445, 'learning_rate': 5.060239153161872e-07, 'epoch': 2.7}
550
+ {'loss': 0.41, 'learning_rate': 4.894348370484648e-07, 'epoch': 2.71}
551
+ {'loss': 0.4057, 'learning_rate': 4.731154091513546e-07, 'epoch': 2.71}
552
+ {'loss': 0.4434, 'learning_rate': 4.570660943249927e-07, 'epoch': 2.72}
553
+ {'loss': 0.4426, 'learning_rate': 4.412873476110702e-07, 'epoch': 2.72}
554
+ {'loss': 0.45, 'learning_rate': 4.2577961637994544e-07, 'epoch': 2.73}
555
+ {'loss': 0.4599, 'learning_rate': 4.1054334031794373e-07, 'epoch': 2.73}
556
+ {'loss': 0.4295, 'learning_rate': 3.955789514149022e-07, 'epoch': 2.74}
557
+ {'loss': 0.4513, 'learning_rate': 3.808868739519167e-07, 'epoch': 2.74}
558
+ {'loss': 0.4506, 'learning_rate': 3.6646752448931345e-07, 'epoch': 2.75}
559
+ {'loss': 0.4185, 'learning_rate': 3.5232131185484075e-07, 'epoch': 2.75}
560
+ {'loss': 0.4606, 'learning_rate': 3.3844863713207276e-07, 'epoch': 2.76}
561
+ {'loss': 0.4261, 'learning_rate': 3.2484989364904295e-07, 'epoch': 2.76}
562
+ {'loss': 0.4821, 'learning_rate': 3.115254669670864e-07, 'epoch': 2.77}
563
+ {'loss': 0.4288, 'learning_rate': 2.984757348699152e-07, 'epoch': 2.77}
564
+ {'loss': 0.4432, 'learning_rate': 2.857010673529015e-07, 'epoch': 2.77}
565
+ {'loss': 0.4424, 'learning_rate': 2.7320182661258687e-07, 'epoch': 2.78}
566
+ {'loss': 0.4282, 'learning_rate': 2.6097836703641856e-07, 'epoch': 2.78}
567
+ {'loss': 0.4308, 'learning_rate': 2.4903103519269724e-07, 'epoch': 2.79}
568
+ {'loss': 0.4351, 'learning_rate': 2.3736016982075172e-07, 'epoch': 2.79}
569
+ {'loss': 0.4643, 'learning_rate': 2.2596610182133328e-07, 'epoch': 2.8}
570
+ {'loss': 0.4021, 'learning_rate': 2.1484915424723973e-07, 'epoch': 2.8}
571
+ {'loss': 0.4636, 'learning_rate': 2.0400964229414732e-07, 'epoch': 2.81}
572
+ {'loss': 0.4147, 'learning_rate': 1.9344787329168002e-07, 'epoch': 2.81}
573
+ {'loss': 0.4403, 'learning_rate': 1.831641466946954e-07, 'epoch': 2.82}
574
+ {'loss': 0.4198, 'learning_rate': 1.731587540747903e-07, 'epoch': 2.82}
575
+ {'loss': 0.427, 'learning_rate': 1.6343197911203978e-07, 'epoch': 2.83}
576
+ {'loss': 0.4248, 'learning_rate': 1.5398409758695e-07, 'epoch': 2.83}
577
+ {'loss': 0.4289, 'learning_rate': 1.448153773726402e-07, 'epoch': 2.84}
578
+ {'loss': 0.4722, 'learning_rate': 1.3592607842724648e-07, 'epoch': 2.84}
579
+ {'loss': 0.4236, 'learning_rate': 1.2731645278655448e-07, 'epoch': 2.85}
580
+ {'loss': 0.4246, 'learning_rate': 1.1898674455685045e-07, 'epoch': 2.85}
581
+ {'loss': 0.4101, 'learning_rate': 1.109371899080025e-07, 'epoch': 2.86}
582
+ {'loss': 0.4121, 'learning_rate': 1.0316801706676038e-07, 'epoch': 2.86}
583
+ {'loss': 0.4444, 'learning_rate': 9.56794463102917e-08, 'epoch': 2.87}
584
+ {'loss': 0.4051, 'learning_rate': 8.847168995992916e-08, 'epoch': 2.87}
585
+ {'loss': 0.4471, 'learning_rate': 8.154495237515436e-08, 'epoch': 2.88}
586
+ {'loss': 0.4233, 'learning_rate': 7.489942994780452e-08, 'epoch': 2.88}
587
+ {'loss': 0.4291, 'learning_rate': 6.853531109650147e-08, 'epoch': 2.89}
588
+ {'loss': 0.4223, 'learning_rate': 6.245277626131142e-08, 'epoch': 2.89}
589
+ {'loss': 0.453, 'learning_rate': 5.665199789862907e-08, 'epoch': 2.9}
590
+ {'loss': 0.4441, 'learning_rate': 5.113314047628493e-08, 'epoch': 2.9}
591
+ {'loss': 0.4321, 'learning_rate': 4.589636046888779e-08, 'epoch': 2.91}
592
+ {'loss': 0.4269, 'learning_rate': 4.094180635338396e-08, 'epoch': 2.91}
593
+ {'loss': 0.4322, 'learning_rate': 3.626961860484723e-08, 'epoch': 2.92}
594
+ {'loss': 0.4437, 'learning_rate': 3.187992969249876e-08, 'epoch': 2.92}
595
+ {'loss': 0.4586, 'learning_rate': 2.7772864075950036e-08, 'epoch': 2.93}
596
+ {'loss': 0.3856, 'learning_rate': 2.3948538201672423e-08, 'epoch': 2.93}
597
+ {'loss': 0.4119, 'learning_rate': 2.040706049970087e-08, 'epoch': 2.94}
598
+ {'loss': 0.4226, 'learning_rate': 1.7148531380550836e-08, 'epoch': 2.94}
599
+ {'loss': 0.482, 'learning_rate': 1.4173043232380557e-08, 'epoch': 2.95}
600
+ {'loss': 0.4239, 'learning_rate': 1.1480680418365364e-08, 'epoch': 2.95}
601
+ {'loss': 0.4413, 'learning_rate': 9.071519274308494e-09, 'epoch': 2.96}
602
+ {'loss': 0.4437, 'learning_rate': 6.945628106477254e-09, 'epoch': 2.96}
603
+ {'loss': 0.4167, 'learning_rate': 5.1030671896623585e-09, 'epoch': 2.97}
604
+ {'loss': 0.4708, 'learning_rate': 3.5438887654737355e-09, 'epoch': 2.97}
605
+ {'loss': 0.4238, 'learning_rate': 2.268137040859486e-09, 'epoch': 2.98}
606
+ {'loss': 0.4461, 'learning_rate': 1.275848186845785e-09, 'epoch': 2.98}
607
+ {'loss': 0.4198, 'learning_rate': 5.670503375188041e-10, 'epoch': 2.99}
608
+ {'loss': 0.4303, 'learning_rate': 1.4176358922535216e-10, 'epoch': 2.99}
609
+ {'loss': 0.4549, 'learning_rate': 0.0, 'epoch': 3.0}
610
+ {'train_runtime': 2516.2407, 'train_samples_per_second': 62.0, 'train_steps_per_second': 0.242, 'train_loss': 0.7446256145370026, 'epoch': 3.0}
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 512,
43
+ "pad_token": "[PAD]",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": false
50
+ }
trainer_state.json ADDED
@@ -0,0 +1,3684 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9963099630996313,
5
+ "eval_steps": 500,
6
+ "global_step": 609,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.0526315789473685e-06,
14
+ "loss": 1.4447,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2.105263157894737e-06,
20
+ "loss": 1.3907,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 3.157894736842105e-06,
26
+ "loss": 1.5017,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 4.210526315789474e-06,
32
+ "loss": 1.4544,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 5.263157894736842e-06,
38
+ "loss": 1.3461,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 6.31578947368421e-06,
44
+ "loss": 1.3171,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.03,
49
+ "learning_rate": 7.368421052631579e-06,
50
+ "loss": 1.1776,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 8.421052631578948e-06,
56
+ "loss": 1.1273,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.04,
61
+ "learning_rate": 9.473684210526315e-06,
62
+ "loss": 1.1275,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.05,
67
+ "learning_rate": 1.0526315789473684e-05,
68
+ "loss": 1.1438,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.05,
73
+ "learning_rate": 1.1578947368421053e-05,
74
+ "loss": 1.1209,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.06,
79
+ "learning_rate": 1.263157894736842e-05,
80
+ "loss": 1.1103,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.06,
85
+ "learning_rate": 1.3684210526315791e-05,
86
+ "loss": 1.0928,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.07,
91
+ "learning_rate": 1.4736842105263159e-05,
92
+ "loss": 1.1159,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.07,
97
+ "learning_rate": 1.578947368421053e-05,
98
+ "loss": 1.0849,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.08,
103
+ "learning_rate": 1.6842105263157896e-05,
104
+ "loss": 1.1111,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.08,
109
+ "learning_rate": 1.7894736842105264e-05,
110
+ "loss": 1.0601,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.09,
115
+ "learning_rate": 1.894736842105263e-05,
116
+ "loss": 1.0465,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.09,
121
+ "learning_rate": 2e-05,
122
+ "loss": 1.1147,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.1,
127
+ "learning_rate": 1.9999858236410775e-05,
128
+ "loss": 1.0821,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.1,
133
+ "learning_rate": 1.9999432949662483e-05,
134
+ "loss": 1.0825,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.11,
139
+ "learning_rate": 1.9998724151813157e-05,
140
+ "loss": 1.0586,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.11,
145
+ "learning_rate": 1.9997731862959143e-05,
146
+ "loss": 0.9922,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.12,
151
+ "learning_rate": 1.999645611123453e-05,
152
+ "loss": 1.0883,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.12,
157
+ "learning_rate": 1.999489693281034e-05,
158
+ "loss": 1.0732,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.13,
163
+ "learning_rate": 1.9993054371893526e-05,
164
+ "loss": 1.0446,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.13,
169
+ "learning_rate": 1.9990928480725694e-05,
170
+ "loss": 1.0727,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.14,
175
+ "learning_rate": 1.9988519319581637e-05,
176
+ "loss": 1.0571,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.14,
181
+ "learning_rate": 1.998582695676762e-05,
182
+ "loss": 1.0468,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.15,
187
+ "learning_rate": 1.998285146861945e-05,
188
+ "loss": 1.0842,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.15,
193
+ "learning_rate": 1.99795929395003e-05,
194
+ "loss": 1.049,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.16,
199
+ "learning_rate": 1.997605146179833e-05,
200
+ "loss": 1.0692,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.16,
205
+ "learning_rate": 1.997222713592405e-05,
206
+ "loss": 1.102,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.17,
211
+ "learning_rate": 1.9968120070307503e-05,
212
+ "loss": 1.0966,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.17,
217
+ "learning_rate": 1.9963730381395154e-05,
218
+ "loss": 1.0737,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.18,
223
+ "learning_rate": 1.9959058193646618e-05,
224
+ "loss": 1.1272,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.18,
229
+ "learning_rate": 1.9954103639531116e-05,
230
+ "loss": 1.0473,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.19,
235
+ "learning_rate": 1.9948866859523717e-05,
236
+ "loss": 1.0833,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.19,
241
+ "learning_rate": 1.9943348002101374e-05,
242
+ "loss": 1.0726,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.2,
247
+ "learning_rate": 1.993754722373869e-05,
248
+ "loss": 1.0654,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.2,
253
+ "learning_rate": 1.9931464688903502e-05,
254
+ "loss": 1.1264,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.21,
259
+ "learning_rate": 1.9925100570052194e-05,
260
+ "loss": 1.1054,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.21,
265
+ "learning_rate": 1.9918455047624847e-05,
266
+ "loss": 1.0547,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.22,
271
+ "learning_rate": 1.9911528310040073e-05,
272
+ "loss": 1.0563,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.22,
277
+ "learning_rate": 1.990432055368971e-05,
278
+ "loss": 1.126,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.23,
283
+ "learning_rate": 1.989683198293324e-05,
284
+ "loss": 1.1026,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.23,
289
+ "learning_rate": 1.9889062810092002e-05,
290
+ "loss": 1.0855,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.24,
295
+ "learning_rate": 1.9881013255443152e-05,
296
+ "loss": 1.0877,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.24,
301
+ "learning_rate": 1.9872683547213446e-05,
302
+ "loss": 1.0778,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.25,
307
+ "learning_rate": 1.9864073921572756e-05,
308
+ "loss": 1.093,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.25,
313
+ "learning_rate": 1.9855184622627362e-05,
314
+ "loss": 1.0727,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.26,
319
+ "learning_rate": 1.9846015902413053e-05,
320
+ "loss": 1.102,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.26,
325
+ "learning_rate": 1.9836568020887963e-05,
326
+ "loss": 1.0143,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.27,
331
+ "learning_rate": 1.982684124592521e-05,
332
+ "loss": 1.0569,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.27,
337
+ "learning_rate": 1.9816835853305306e-05,
338
+ "loss": 1.0162,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.28,
343
+ "learning_rate": 1.9806552126708322e-05,
344
+ "loss": 1.1145,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.28,
349
+ "learning_rate": 1.9795990357705853e-05,
350
+ "loss": 1.0594,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.29,
355
+ "learning_rate": 1.978515084575276e-05,
356
+ "loss": 1.0457,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.29,
361
+ "learning_rate": 1.9774033898178668e-05,
362
+ "loss": 1.0041,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.3,
367
+ "learning_rate": 1.976263983017925e-05,
368
+ "loss": 1.0733,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.3,
373
+ "learning_rate": 1.9750968964807305e-05,
374
+ "loss": 1.0531,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.31,
379
+ "learning_rate": 1.9739021632963584e-05,
380
+ "loss": 1.0919,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.31,
385
+ "learning_rate": 1.9726798173387417e-05,
386
+ "loss": 1.0596,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.31,
391
+ "learning_rate": 1.97142989326471e-05,
392
+ "loss": 1.1139,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.32,
397
+ "learning_rate": 1.9701524265130088e-05,
398
+ "loss": 1.0778,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.32,
403
+ "learning_rate": 1.9688474533032916e-05,
404
+ "loss": 1.0967,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.33,
409
+ "learning_rate": 1.9675150106350957e-05,
410
+ "loss": 0.9886,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.33,
415
+ "learning_rate": 1.9661551362867926e-05,
416
+ "loss": 1.0856,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.34,
421
+ "learning_rate": 1.9647678688145163e-05,
422
+ "loss": 1.1126,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.34,
427
+ "learning_rate": 1.963353247551069e-05,
428
+ "loss": 1.0469,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.35,
433
+ "learning_rate": 1.9619113126048086e-05,
434
+ "loss": 1.0468,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.35,
439
+ "learning_rate": 1.96044210485851e-05,
440
+ "loss": 1.0714,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.36,
445
+ "learning_rate": 1.958945665968206e-05,
446
+ "loss": 1.0462,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.36,
451
+ "learning_rate": 1.9574220383620054e-05,
452
+ "loss": 1.0823,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.37,
457
+ "learning_rate": 1.9558712652388932e-05,
458
+ "loss": 1.0293,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.37,
463
+ "learning_rate": 1.954293390567501e-05,
464
+ "loss": 1.0461,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.38,
469
+ "learning_rate": 1.9526884590848646e-05,
470
+ "loss": 1.1083,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.38,
475
+ "learning_rate": 1.9510565162951538e-05,
476
+ "loss": 1.0561,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.39,
481
+ "learning_rate": 1.9493976084683814e-05,
482
+ "loss": 1.0468,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.39,
487
+ "learning_rate": 1.9477117826390934e-05,
488
+ "loss": 1.0881,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.4,
493
+ "learning_rate": 1.9459990866050337e-05,
494
+ "loss": 1.0578,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.4,
499
+ "learning_rate": 1.9442595689257898e-05,
500
+ "loss": 1.0839,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.41,
505
+ "learning_rate": 1.9424932789214158e-05,
506
+ "loss": 1.1076,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.41,
511
+ "learning_rate": 1.9407002666710334e-05,
512
+ "loss": 1.1003,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.42,
517
+ "learning_rate": 1.9388805830114132e-05,
518
+ "loss": 1.0066,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.42,
523
+ "learning_rate": 1.937034279535533e-05,
524
+ "loss": 1.0444,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.43,
529
+ "learning_rate": 1.9351614085911134e-05,
530
+ "loss": 1.0942,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.43,
535
+ "learning_rate": 1.933262023279137e-05,
536
+ "loss": 1.038,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.44,
541
+ "learning_rate": 1.9313361774523387e-05,
542
+ "loss": 1.091,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.44,
547
+ "learning_rate": 1.929383925713682e-05,
548
+ "loss": 1.0893,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.45,
553
+ "learning_rate": 1.92740532341481e-05,
554
+ "loss": 1.1238,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.45,
559
+ "learning_rate": 1.925400426654475e-05,
560
+ "loss": 1.1062,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.46,
565
+ "learning_rate": 1.9233692922769497e-05,
566
+ "loss": 1.0967,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.46,
571
+ "learning_rate": 1.921311977870413e-05,
572
+ "loss": 1.1492,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.47,
577
+ "learning_rate": 1.9192285417653208e-05,
578
+ "loss": 1.0391,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.47,
583
+ "learning_rate": 1.917119043032749e-05,
584
+ "loss": 1.0374,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.48,
589
+ "learning_rate": 1.9149835414827193e-05,
590
+ "loss": 1.0515,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.48,
595
+ "learning_rate": 1.912822097662505e-05,
596
+ "loss": 1.0428,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.49,
601
+ "learning_rate": 1.9106347728549134e-05,
602
+ "loss": 1.045,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.49,
607
+ "learning_rate": 1.908421629076547e-05,
608
+ "loss": 1.0973,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.5,
613
+ "learning_rate": 1.9061827290760466e-05,
614
+ "loss": 1.1027,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.5,
619
+ "learning_rate": 1.9039181363323128e-05,
620
+ "loss": 1.0764,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.51,
625
+ "learning_rate": 1.9016279150527044e-05,
626
+ "loss": 1.0589,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.51,
631
+ "learning_rate": 1.8993121301712194e-05,
632
+ "loss": 1.1008,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.52,
637
+ "learning_rate": 1.896970847346653e-05,
638
+ "loss": 1.0672,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.52,
643
+ "learning_rate": 1.8946041329607364e-05,
644
+ "loss": 1.0408,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.53,
649
+ "learning_rate": 1.892212054116255e-05,
650
+ "loss": 1.1093,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.53,
655
+ "learning_rate": 1.889794678635145e-05,
656
+ "loss": 1.0546,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.54,
661
+ "learning_rate": 1.8873520750565716e-05,
662
+ "loss": 1.0904,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.54,
667
+ "learning_rate": 1.884884312634985e-05,
668
+ "loss": 1.0795,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.55,
673
+ "learning_rate": 1.8823914613381568e-05,
674
+ "loss": 1.1308,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.55,
679
+ "learning_rate": 1.8798735918451963e-05,
680
+ "loss": 1.0742,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.56,
685
+ "learning_rate": 1.8773307755445468e-05,
686
+ "loss": 1.043,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.56,
691
+ "learning_rate": 1.874763084531961e-05,
692
+ "loss": 1.1104,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.57,
697
+ "learning_rate": 1.872170591608459e-05,
698
+ "loss": 1.0683,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.57,
703
+ "learning_rate": 1.86955337027826e-05,
704
+ "loss": 1.0883,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.58,
709
+ "learning_rate": 1.866911494746702e-05,
710
+ "loss": 1.0489,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.58,
715
+ "learning_rate": 1.8642450399181373e-05,
716
+ "loss": 1.0997,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.59,
721
+ "learning_rate": 1.8615540813938063e-05,
722
+ "loss": 1.0673,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.59,
727
+ "learning_rate": 1.8588386954696972e-05,
728
+ "loss": 1.0418,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.6,
733
+ "learning_rate": 1.856098959134381e-05,
734
+ "loss": 1.1213,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.6,
739
+ "learning_rate": 1.8533349500668295e-05,
740
+ "loss": 1.0514,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.61,
745
+ "learning_rate": 1.850546746634211e-05,
746
+ "loss": 0.9767,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.61,
751
+ "learning_rate": 1.8477344278896708e-05,
752
+ "loss": 1.1253,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.62,
757
+ "learning_rate": 1.84489807357009e-05,
758
+ "loss": 1.1082,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.62,
763
+ "learning_rate": 1.8420377640938204e-05,
764
+ "loss": 1.0326,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.62,
769
+ "learning_rate": 1.839153580558411e-05,
770
+ "loss": 1.0417,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.63,
775
+ "learning_rate": 1.8362456047383032e-05,
776
+ "loss": 1.0524,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.63,
781
+ "learning_rate": 1.833313919082515e-05,
782
+ "loss": 1.0292,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.64,
787
+ "learning_rate": 1.8303586067123028e-05,
788
+ "loss": 1.0346,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.64,
793
+ "learning_rate": 1.8273797514188043e-05,
794
+ "loss": 1.0649,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.65,
799
+ "learning_rate": 1.824377437660663e-05,
800
+ "loss": 1.0417,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.65,
805
+ "learning_rate": 1.821351750561634e-05,
806
+ "loss": 1.0865,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.66,
811
+ "learning_rate": 1.818302775908169e-05,
812
+ "loss": 1.1223,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.66,
817
+ "learning_rate": 1.8152306001469875e-05,
818
+ "loss": 1.0438,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.67,
823
+ "learning_rate": 1.8121353103826213e-05,
824
+ "loss": 1.0823,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.67,
829
+ "learning_rate": 1.8090169943749477e-05,
830
+ "loss": 1.1072,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.68,
835
+ "learning_rate": 1.8058757405367003e-05,
836
+ "loss": 1.0501,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.68,
841
+ "learning_rate": 1.8027116379309637e-05,
842
+ "loss": 1.0628,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.69,
847
+ "learning_rate": 1.799524776268646e-05,
848
+ "loss": 1.0703,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.69,
853
+ "learning_rate": 1.796315245905936e-05,
854
+ "loss": 1.128,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.7,
859
+ "learning_rate": 1.7930831378417437e-05,
860
+ "loss": 1.0892,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.7,
865
+ "learning_rate": 1.7898285437151163e-05,
866
+ "loss": 1.0386,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.71,
871
+ "learning_rate": 1.786551555802643e-05,
872
+ "loss": 1.0558,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.71,
877
+ "learning_rate": 1.783252267015837e-05,
878
+ "loss": 1.0661,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.72,
883
+ "learning_rate": 1.779930770898503e-05,
884
+ "loss": 1.0334,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.72,
889
+ "learning_rate": 1.776587161624083e-05,
890
+ "loss": 1.0845,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.73,
895
+ "learning_rate": 1.7732215339929874e-05,
896
+ "loss": 1.0598,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.73,
901
+ "learning_rate": 1.7698339834299064e-05,
902
+ "loss": 1.0262,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.74,
907
+ "learning_rate": 1.7664246059811058e-05,
908
+ "loss": 1.0697,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.74,
913
+ "learning_rate": 1.7629934983117025e-05,
914
+ "loss": 1.0381,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.75,
919
+ "learning_rate": 1.759540757702924e-05,
920
+ "loss": 1.0635,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.75,
925
+ "learning_rate": 1.7560664820493502e-05,
926
+ "loss": 1.0511,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.76,
931
+ "learning_rate": 1.7525707698561383e-05,
932
+ "loss": 1.0664,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.76,
937
+ "learning_rate": 1.7490537202362313e-05,
938
+ "loss": 1.0857,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.77,
943
+ "learning_rate": 1.7455154329075427e-05,
944
+ "loss": 1.1041,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.77,
949
+ "learning_rate": 1.741956008190136e-05,
950
+ "loss": 1.0884,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.78,
955
+ "learning_rate": 1.7383755470033756e-05,
956
+ "loss": 1.0856,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.78,
961
+ "learning_rate": 1.7347741508630673e-05,
962
+ "loss": 1.092,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.79,
967
+ "learning_rate": 1.73115192187858e-05,
968
+ "loss": 1.0648,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.79,
973
+ "learning_rate": 1.7275089627499493e-05,
974
+ "loss": 1.0487,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.8,
979
+ "learning_rate": 1.7238453767649683e-05,
980
+ "loss": 1.1282,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.8,
985
+ "learning_rate": 1.720161267796256e-05,
986
+ "loss": 1.0269,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.81,
991
+ "learning_rate": 1.7164567402983153e-05,
992
+ "loss": 1.0886,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.81,
997
+ "learning_rate": 1.7127318993045686e-05,
998
+ "loss": 1.0929,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.82,
1003
+ "learning_rate": 1.7089868504243816e-05,
1004
+ "loss": 1.0275,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.82,
1009
+ "learning_rate": 1.705221699840069e-05,
1010
+ "loss": 1.0664,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.83,
1015
+ "learning_rate": 1.701436554303882e-05,
1016
+ "loss": 1.0425,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.83,
1021
+ "learning_rate": 1.6976315211349848e-05,
1022
+ "loss": 1.0874,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.84,
1027
+ "learning_rate": 1.6938067082164093e-05,
1028
+ "loss": 1.0231,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.84,
1033
+ "learning_rate": 1.6899622239919965e-05,
1034
+ "loss": 1.0946,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.85,
1039
+ "learning_rate": 1.6860981774633228e-05,
1040
+ "loss": 1.0386,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.85,
1045
+ "learning_rate": 1.6822146781866097e-05,
1046
+ "loss": 1.0117,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.86,
1051
+ "learning_rate": 1.6783118362696162e-05,
1052
+ "loss": 1.1307,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.86,
1057
+ "learning_rate": 1.6743897623685178e-05,
1058
+ "loss": 1.0989,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.87,
1063
+ "learning_rate": 1.6704485676847695e-05,
1064
+ "loss": 1.0728,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.87,
1069
+ "learning_rate": 1.666488363961952e-05,
1070
+ "loss": 1.0572,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.88,
1075
+ "learning_rate": 1.662509263482604e-05,
1076
+ "loss": 1.085,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.88,
1081
+ "learning_rate": 1.658511379065039e-05,
1082
+ "loss": 1.0516,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.89,
1087
+ "learning_rate": 1.6544948240601453e-05,
1088
+ "loss": 1.06,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.89,
1093
+ "learning_rate": 1.6504597123481737e-05,
1094
+ "loss": 1.0361,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.9,
1099
+ "learning_rate": 1.6464061583355088e-05,
1100
+ "loss": 1.0125,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.9,
1105
+ "learning_rate": 1.6423342769514227e-05,
1106
+ "loss": 1.0785,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.91,
1111
+ "learning_rate": 1.6382441836448203e-05,
1112
+ "loss": 1.0889,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.91,
1117
+ "learning_rate": 1.6341359943809626e-05,
1118
+ "loss": 1.0746,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.92,
1123
+ "learning_rate": 1.6300098256381807e-05,
1124
+ "loss": 1.0962,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.92,
1129
+ "learning_rate": 1.625865794404573e-05,
1130
+ "loss": 1.0326,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.92,
1135
+ "learning_rate": 1.621704018174688e-05,
1136
+ "loss": 1.0519,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.93,
1141
+ "learning_rate": 1.617524614946192e-05,
1142
+ "loss": 1.0175,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.93,
1147
+ "learning_rate": 1.6133277032165264e-05,
1148
+ "loss": 1.0873,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.94,
1153
+ "learning_rate": 1.6091134019795447e-05,
1154
+ "loss": 1.0447,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.94,
1159
+ "learning_rate": 1.604881830722141e-05,
1160
+ "loss": 1.0371,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.95,
1165
+ "learning_rate": 1.600633109420861e-05,
1166
+ "loss": 1.0877,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.95,
1171
+ "learning_rate": 1.5963673585385016e-05,
1172
+ "loss": 1.0713,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.96,
1177
+ "learning_rate": 1.5920846990206934e-05,
1178
+ "loss": 1.0405,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.96,
1183
+ "learning_rate": 1.5877852522924733e-05,
1184
+ "loss": 1.0368,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.97,
1189
+ "learning_rate": 1.5834691402548415e-05,
1190
+ "loss": 1.1261,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.97,
1195
+ "learning_rate": 1.5791364852813047e-05,
1196
+ "loss": 1.0917,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.98,
1201
+ "learning_rate": 1.5747874102144073e-05,
1202
+ "loss": 1.1039,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.98,
1207
+ "learning_rate": 1.5704220383622464e-05,
1208
+ "loss": 1.0419,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.99,
1213
+ "learning_rate": 1.5660404934949798e-05,
1214
+ "loss": 1.0511,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.99,
1219
+ "learning_rate": 1.5616428998413122e-05,
1220
+ "loss": 1.0509,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.0,
1225
+ "learning_rate": 1.5572293820849754e-05,
1226
+ "loss": 1.1341,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.0,
1231
+ "learning_rate": 1.5528000653611935e-05,
1232
+ "loss": 0.8075,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.01,
1237
+ "learning_rate": 1.5483550752531337e-05,
1238
+ "loss": 0.7722,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.01,
1243
+ "learning_rate": 1.5438945377883463e-05,
1244
+ "loss": 0.7516,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.02,
1249
+ "learning_rate": 1.5394185794351914e-05,
1250
+ "loss": 0.7116,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 1.02,
1255
+ "learning_rate": 1.5349273270992537e-05,
1256
+ "loss": 0.7119,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 1.03,
1261
+ "learning_rate": 1.5304209081197425e-05,
1262
+ "loss": 0.7054,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 1.03,
1267
+ "learning_rate": 1.5258994502658846e-05,
1268
+ "loss": 0.7716,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 1.04,
1273
+ "learning_rate": 1.5213630817332985e-05,
1274
+ "loss": 0.7191,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 1.04,
1279
+ "learning_rate": 1.5168119311403611e-05,
1280
+ "loss": 0.7285,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 1.05,
1285
+ "learning_rate": 1.512246127524561e-05,
1286
+ "loss": 0.7226,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 1.05,
1291
+ "learning_rate": 1.50766580033884e-05,
1292
+ "loss": 0.709,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 1.06,
1297
+ "learning_rate": 1.5030710794479226e-05,
1298
+ "loss": 0.7776,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 1.06,
1303
+ "learning_rate": 1.4984620951246333e-05,
1304
+ "loss": 0.7105,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.07,
1309
+ "learning_rate": 1.4938389780462044e-05,
1310
+ "loss": 0.7367,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.07,
1315
+ "learning_rate": 1.4892018592905702e-05,
1316
+ "loss": 0.7228,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.08,
1321
+ "learning_rate": 1.4845508703326504e-05,
1322
+ "loss": 0.7111,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.08,
1327
+ "learning_rate": 1.4798861430406221e-05,
1328
+ "loss": 0.696,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.09,
1333
+ "learning_rate": 1.4752078096721827e-05,
1334
+ "loss": 0.7074,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.09,
1339
+ "learning_rate": 1.4705160028707976e-05,
1340
+ "loss": 0.7417,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.1,
1345
+ "learning_rate": 1.4658108556619417e-05,
1346
+ "loss": 0.711,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 1.1,
1351
+ "learning_rate": 1.461092501449326e-05,
1352
+ "loss": 0.6855,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 1.11,
1357
+ "learning_rate": 1.4563610740111163e-05,
1358
+ "loss": 0.7157,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 1.11,
1363
+ "learning_rate": 1.4516167074961394e-05,
1364
+ "loss": 0.6933,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 1.12,
1369
+ "learning_rate": 1.4468595364200808e-05,
1370
+ "loss": 0.6964,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 1.12,
1375
+ "learning_rate": 1.4420896956616698e-05,
1376
+ "loss": 0.745,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 1.13,
1381
+ "learning_rate": 1.4373073204588556e-05,
1382
+ "loss": 0.7293,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 1.13,
1387
+ "learning_rate": 1.4325125464049725e-05,
1388
+ "loss": 0.7146,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 1.14,
1393
+ "learning_rate": 1.427705509444897e-05,
1394
+ "loss": 0.7126,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 1.14,
1399
+ "learning_rate": 1.4228863458711915e-05,
1400
+ "loss": 0.7188,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 1.15,
1405
+ "learning_rate": 1.4180551923202406e-05,
1406
+ "loss": 0.7307,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 1.15,
1411
+ "learning_rate": 1.4132121857683782e-05,
1412
+ "loss": 0.708,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 1.16,
1417
+ "learning_rate": 1.4083574635280029e-05,
1418
+ "loss": 0.7049,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 1.16,
1423
+ "learning_rate": 1.403491163243684e-05,
1424
+ "loss": 0.7024,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 1.17,
1429
+ "learning_rate": 1.3986134228882607e-05,
1430
+ "loss": 0.7586,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 1.17,
1435
+ "learning_rate": 1.3937243807589291e-05,
1436
+ "loss": 0.74,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 1.18,
1441
+ "learning_rate": 1.388824175473321e-05,
1442
+ "loss": 0.6969,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 1.18,
1447
+ "learning_rate": 1.383912945965574e-05,
1448
+ "loss": 0.7288,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 1.19,
1453
+ "learning_rate": 1.3789908314823932e-05,
1454
+ "loss": 0.719,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 1.19,
1459
+ "learning_rate": 1.3740579715791017e-05,
1460
+ "loss": 0.7207,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 1.2,
1465
+ "learning_rate": 1.3691145061156843e-05,
1466
+ "loss": 0.7301,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 1.2,
1471
+ "learning_rate": 1.3641605752528225e-05,
1472
+ "loss": 0.7267,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 1.21,
1477
+ "learning_rate": 1.3591963194479198e-05,
1478
+ "loss": 0.7195,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 1.21,
1483
+ "learning_rate": 1.3542218794511212e-05,
1484
+ "loss": 0.7118,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 1.22,
1489
+ "learning_rate": 1.3492373963013199e-05,
1490
+ "loss": 0.71,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 1.22,
1495
+ "learning_rate": 1.3442430113221602e-05,
1496
+ "loss": 0.7399,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 1.23,
1501
+ "learning_rate": 1.3392388661180303e-05,
1502
+ "loss": 0.7077,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 1.23,
1507
+ "learning_rate": 1.3342251025700474e-05,
1508
+ "loss": 0.7209,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 1.23,
1513
+ "learning_rate": 1.3292018628320346e-05,
1514
+ "loss": 0.7205,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 1.24,
1519
+ "learning_rate": 1.3241692893264909e-05,
1520
+ "loss": 0.7097,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 1.24,
1525
+ "learning_rate": 1.3191275247405525e-05,
1526
+ "loss": 0.7083,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 1.25,
1531
+ "learning_rate": 1.314076712021949e-05,
1532
+ "loss": 0.7023,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 1.25,
1537
+ "learning_rate": 1.3090169943749475e-05,
1538
+ "loss": 0.6789,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 1.26,
1543
+ "learning_rate": 1.3039485152562951e-05,
1544
+ "loss": 0.6707,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 1.26,
1549
+ "learning_rate": 1.2988714183711504e-05,
1550
+ "loss": 0.7348,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 1.27,
1555
+ "learning_rate": 1.2937858476690089e-05,
1556
+ "loss": 0.7231,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 1.27,
1561
+ "learning_rate": 1.2886919473396212e-05,
1562
+ "loss": 0.7394,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 1.28,
1567
+ "learning_rate": 1.2835898618089064e-05,
1568
+ "loss": 0.6958,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 1.28,
1573
+ "learning_rate": 1.2784797357348562e-05,
1574
+ "loss": 0.7074,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 1.29,
1579
+ "learning_rate": 1.2733617140034329e-05,
1580
+ "loss": 0.6826,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 1.29,
1585
+ "learning_rate": 1.268235941724463e-05,
1586
+ "loss": 0.6889,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 1.3,
1591
+ "learning_rate": 1.2631025642275212e-05,
1592
+ "loss": 0.7218,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 1.3,
1597
+ "learning_rate": 1.257961727057812e-05,
1598
+ "loss": 0.6902,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 1.31,
1603
+ "learning_rate": 1.2528135759720403e-05,
1604
+ "loss": 0.7017,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 1.31,
1609
+ "learning_rate": 1.2476582569342819e-05,
1610
+ "loss": 0.7281,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 1.32,
1615
+ "learning_rate": 1.2424959161118425e-05,
1616
+ "loss": 0.7372,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 1.32,
1621
+ "learning_rate": 1.2373266998711152e-05,
1622
+ "loss": 0.6928,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 1.33,
1627
+ "learning_rate": 1.232150754773429e-05,
1628
+ "loss": 0.7273,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 1.33,
1633
+ "learning_rate": 1.2269682275708951e-05,
1634
+ "loss": 0.7307,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 1.34,
1639
+ "learning_rate": 1.2217792652022452e-05,
1640
+ "loss": 0.7126,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 1.34,
1645
+ "learning_rate": 1.2165840147886656e-05,
1646
+ "loss": 0.6547,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 1.35,
1651
+ "learning_rate": 1.2113826236296245e-05,
1652
+ "loss": 0.724,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 1.35,
1657
+ "learning_rate": 1.2061752391986982e-05,
1658
+ "loss": 0.7313,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 1.36,
1663
+ "learning_rate": 1.2009620091393885e-05,
1664
+ "loss": 0.6745,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 1.36,
1669
+ "learning_rate": 1.1957430812609361e-05,
1670
+ "loss": 0.744,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 1.37,
1675
+ "learning_rate": 1.1905186035341304e-05,
1676
+ "loss": 0.6731,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 1.37,
1681
+ "learning_rate": 1.1852887240871145e-05,
1682
+ "loss": 0.6831,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 1.38,
1687
+ "learning_rate": 1.1800535912011846e-05,
1688
+ "loss": 0.6882,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 1.38,
1693
+ "learning_rate": 1.1748133533065864e-05,
1694
+ "loss": 0.6984,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 1.39,
1699
+ "learning_rate": 1.1695681589783065e-05,
1700
+ "loss": 0.7139,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 1.39,
1705
+ "learning_rate": 1.1643181569318596e-05,
1706
+ "loss": 0.667,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 1.4,
1711
+ "learning_rate": 1.1590634960190722e-05,
1712
+ "loss": 0.7241,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 1.4,
1717
+ "learning_rate": 1.1538043252238629e-05,
1718
+ "loss": 0.7251,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 1.41,
1723
+ "learning_rate": 1.1485407936580169e-05,
1724
+ "loss": 0.7327,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 1.41,
1729
+ "learning_rate": 1.1432730505569597e-05,
1730
+ "loss": 0.714,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 1.42,
1735
+ "learning_rate": 1.1380012452755259e-05,
1736
+ "loss": 0.7661,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 1.42,
1741
+ "learning_rate": 1.1327255272837221e-05,
1742
+ "loss": 0.6702,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 1.43,
1747
+ "learning_rate": 1.1274460461624925e-05,
1748
+ "loss": 0.7246,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 1.43,
1753
+ "learning_rate": 1.1221629515994754e-05,
1754
+ "loss": 0.7415,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 1.44,
1759
+ "learning_rate": 1.1168763933847608e-05,
1760
+ "loss": 0.6757,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 1.44,
1765
+ "learning_rate": 1.1115865214066414e-05,
1766
+ "loss": 0.727,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 1.45,
1771
+ "learning_rate": 1.1062934856473655e-05,
1772
+ "loss": 0.7603,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 1.45,
1777
+ "learning_rate": 1.1009974361788822e-05,
1778
+ "loss": 0.7167,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 1.46,
1783
+ "learning_rate": 1.095698523158588e-05,
1784
+ "loss": 0.6938,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 1.46,
1789
+ "learning_rate": 1.0903968968250682e-05,
1790
+ "loss": 0.6896,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 1.47,
1795
+ "learning_rate": 1.085092707493839e-05,
1796
+ "loss": 0.729,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 1.47,
1801
+ "learning_rate": 1.0797861055530832e-05,
1802
+ "loss": 0.7105,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 1.48,
1807
+ "learning_rate": 1.0744772414593889e-05,
1808
+ "loss": 0.7322,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 1.48,
1813
+ "learning_rate": 1.0691662657334815e-05,
1814
+ "loss": 0.6874,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 1.49,
1819
+ "learning_rate": 1.0638533289559574e-05,
1820
+ "loss": 0.7149,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 1.49,
1825
+ "learning_rate": 1.0585385817630137e-05,
1826
+ "loss": 0.7047,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 1.5,
1831
+ "learning_rate": 1.0532221748421786e-05,
1832
+ "loss": 0.7358,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 1.5,
1837
+ "learning_rate": 1.047904258928037e-05,
1838
+ "loss": 0.7614,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 1.51,
1843
+ "learning_rate": 1.0425849847979586e-05,
1844
+ "loss": 0.7245,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 1.51,
1849
+ "learning_rate": 1.0372645032678215e-05,
1850
+ "loss": 0.793,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 1.52,
1855
+ "learning_rate": 1.031942965187738e-05,
1856
+ "loss": 0.7326,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 1.52,
1861
+ "learning_rate": 1.026620521437775e-05,
1862
+ "loss": 0.7414,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 1.53,
1867
+ "learning_rate": 1.0212973229236787e-05,
1868
+ "loss": 0.6551,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 1.53,
1873
+ "learning_rate": 1.0159735205725949e-05,
1874
+ "loss": 0.75,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 1.54,
1879
+ "learning_rate": 1.0106492653287893e-05,
1880
+ "loss": 0.676,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 1.54,
1885
+ "learning_rate": 1.0053247081493684e-05,
1886
+ "loss": 0.6997,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 1.54,
1891
+ "learning_rate": 1e-05,
1892
+ "loss": 0.723,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 1.55,
1897
+ "learning_rate": 9.946752918506319e-06,
1898
+ "loss": 0.7028,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 1.55,
1903
+ "learning_rate": 9.893507346712112e-06,
1904
+ "loss": 0.7191,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 1.56,
1909
+ "learning_rate": 9.840264794274053e-06,
1910
+ "loss": 0.7544,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 1.56,
1915
+ "learning_rate": 9.787026770763216e-06,
1916
+ "loss": 0.7185,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 1.57,
1921
+ "learning_rate": 9.733794785622254e-06,
1922
+ "loss": 0.7068,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 1.57,
1927
+ "learning_rate": 9.680570348122626e-06,
1928
+ "loss": 0.7022,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 1.58,
1933
+ "learning_rate": 9.627354967321785e-06,
1934
+ "loss": 0.6984,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 1.58,
1939
+ "learning_rate": 9.574150152020415e-06,
1940
+ "loss": 0.7159,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 1.59,
1945
+ "learning_rate": 9.520957410719632e-06,
1946
+ "loss": 0.6666,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 1.59,
1951
+ "learning_rate": 9.467778251578217e-06,
1952
+ "loss": 0.7444,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 1.6,
1957
+ "learning_rate": 9.414614182369862e-06,
1958
+ "loss": 0.7283,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 1.6,
1963
+ "learning_rate": 9.361466710440428e-06,
1964
+ "loss": 0.6926,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 1.61,
1969
+ "learning_rate": 9.308337342665188e-06,
1970
+ "loss": 0.669,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 1.61,
1975
+ "learning_rate": 9.255227585406116e-06,
1976
+ "loss": 0.6912,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 1.62,
1981
+ "learning_rate": 9.202138944469168e-06,
1982
+ "loss": 0.71,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 1.62,
1987
+ "learning_rate": 9.149072925061614e-06,
1988
+ "loss": 0.7034,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 1.63,
1993
+ "learning_rate": 9.096031031749321e-06,
1994
+ "loss": 0.7049,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 1.63,
1999
+ "learning_rate": 9.043014768414125e-06,
2000
+ "loss": 0.6991,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 1.64,
2005
+ "learning_rate": 8.99002563821118e-06,
2006
+ "loss": 0.6585,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 1.64,
2011
+ "learning_rate": 8.937065143526349e-06,
2012
+ "loss": 0.6416,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 1.65,
2017
+ "learning_rate": 8.884134785933588e-06,
2018
+ "loss": 0.7235,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 1.65,
2023
+ "learning_rate": 8.831236066152397e-06,
2024
+ "loss": 0.7031,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 1.66,
2029
+ "learning_rate": 8.778370484005245e-06,
2030
+ "loss": 0.6934,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 1.66,
2035
+ "learning_rate": 8.725539538375078e-06,
2036
+ "loss": 0.7127,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 1.67,
2041
+ "learning_rate": 8.672744727162782e-06,
2042
+ "loss": 0.6487,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 1.67,
2047
+ "learning_rate": 8.619987547244746e-06,
2048
+ "loss": 0.7599,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 1.68,
2053
+ "learning_rate": 8.567269494430404e-06,
2054
+ "loss": 0.6931,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 1.68,
2059
+ "learning_rate": 8.514592063419833e-06,
2060
+ "loss": 0.6817,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 1.69,
2065
+ "learning_rate": 8.461956747761375e-06,
2066
+ "loss": 0.6913,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 1.69,
2071
+ "learning_rate": 8.409365039809282e-06,
2072
+ "loss": 0.7378,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 1.7,
2077
+ "learning_rate": 8.356818430681409e-06,
2078
+ "loss": 0.7299,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 1.7,
2083
+ "learning_rate": 8.304318410216937e-06,
2084
+ "loss": 0.6989,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 1.71,
2089
+ "learning_rate": 8.251866466934137e-06,
2090
+ "loss": 0.7122,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 1.71,
2095
+ "learning_rate": 8.199464087988158e-06,
2096
+ "loss": 0.7174,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 1.72,
2101
+ "learning_rate": 8.147112759128859e-06,
2102
+ "loss": 0.758,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 1.72,
2107
+ "learning_rate": 8.094813964658698e-06,
2108
+ "loss": 0.7127,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 1.73,
2113
+ "learning_rate": 8.042569187390642e-06,
2114
+ "loss": 0.7078,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 1.73,
2119
+ "learning_rate": 7.990379908606118e-06,
2120
+ "loss": 0.739,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 1.74,
2125
+ "learning_rate": 7.938247608013021e-06,
2126
+ "loss": 0.7003,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 1.74,
2131
+ "learning_rate": 7.886173763703757e-06,
2132
+ "loss": 0.6949,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 1.75,
2137
+ "learning_rate": 7.834159852113347e-06,
2138
+ "loss": 0.7243,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 1.75,
2143
+ "learning_rate": 7.78220734797755e-06,
2144
+ "loss": 0.6921,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 1.76,
2149
+ "learning_rate": 7.73031772429105e-06,
2150
+ "loss": 0.7427,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 1.76,
2155
+ "learning_rate": 7.678492452265713e-06,
2156
+ "loss": 0.7168,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 1.77,
2161
+ "learning_rate": 7.626733001288852e-06,
2162
+ "loss": 0.7258,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 1.77,
2167
+ "learning_rate": 7.575040838881578e-06,
2168
+ "loss": 0.7348,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 1.78,
2173
+ "learning_rate": 7.523417430657186e-06,
2174
+ "loss": 0.7206,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 1.78,
2179
+ "learning_rate": 7.471864240279598e-06,
2180
+ "loss": 0.7033,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 1.79,
2185
+ "learning_rate": 7.420382729421883e-06,
2186
+ "loss": 0.7293,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 1.79,
2191
+ "learning_rate": 7.368974357724789e-06,
2192
+ "loss": 0.6891,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 1.8,
2197
+ "learning_rate": 7.317640582755373e-06,
2198
+ "loss": 0.6906,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 1.8,
2203
+ "learning_rate": 7.266382859965673e-06,
2204
+ "loss": 0.718,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 1.81,
2209
+ "learning_rate": 7.2152026426514395e-06,
2210
+ "loss": 0.7093,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 1.81,
2215
+ "learning_rate": 7.164101381910939e-06,
2216
+ "loss": 0.7573,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 1.82,
2221
+ "learning_rate": 7.113080526603793e-06,
2222
+ "loss": 0.7401,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 1.82,
2227
+ "learning_rate": 7.062141523309918e-06,
2228
+ "loss": 0.7497,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 1.83,
2233
+ "learning_rate": 7.011285816288496e-06,
2234
+ "loss": 0.6971,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 1.83,
2239
+ "learning_rate": 6.96051484743705e-06,
2240
+ "loss": 0.6833,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 1.84,
2245
+ "learning_rate": 6.909830056250527e-06,
2246
+ "loss": 0.7011,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 1.84,
2251
+ "learning_rate": 6.859232879780515e-06,
2252
+ "loss": 0.6817,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 1.85,
2257
+ "learning_rate": 6.8087247525944745e-06,
2258
+ "loss": 0.7151,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 1.85,
2263
+ "learning_rate": 6.758307106735094e-06,
2264
+ "loss": 0.7414,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 1.85,
2269
+ "learning_rate": 6.707981371679657e-06,
2270
+ "loss": 0.6849,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 1.86,
2275
+ "learning_rate": 6.657748974299529e-06,
2276
+ "loss": 0.7354,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 1.86,
2281
+ "learning_rate": 6.607611338819697e-06,
2282
+ "loss": 0.7282,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 1.87,
2287
+ "learning_rate": 6.557569886778401e-06,
2288
+ "loss": 0.7203,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 1.87,
2293
+ "learning_rate": 6.507626036986804e-06,
2294
+ "loss": 0.694,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 1.88,
2299
+ "learning_rate": 6.457781205488791e-06,
2300
+ "loss": 0.6511,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 1.88,
2305
+ "learning_rate": 6.408036805520801e-06,
2306
+ "loss": 0.7237,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 1.89,
2311
+ "learning_rate": 6.358394247471779e-06,
2312
+ "loss": 0.6414,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 1.89,
2317
+ "learning_rate": 6.308854938843161e-06,
2318
+ "loss": 0.7242,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 1.9,
2323
+ "learning_rate": 6.259420284208987e-06,
2324
+ "loss": 0.7004,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 1.9,
2329
+ "learning_rate": 6.210091685176067e-06,
2330
+ "loss": 0.6722,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 1.91,
2335
+ "learning_rate": 6.160870540344261e-06,
2336
+ "loss": 0.7137,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 1.91,
2341
+ "learning_rate": 6.111758245266795e-06,
2342
+ "loss": 0.6998,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 1.92,
2347
+ "learning_rate": 6.0627561924107145e-06,
2348
+ "loss": 0.7149,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 1.92,
2353
+ "learning_rate": 6.013865771117394e-06,
2354
+ "loss": 0.7787,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 1.93,
2359
+ "learning_rate": 5.965088367563162e-06,
2360
+ "loss": 0.7272,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 1.93,
2365
+ "learning_rate": 5.916425364719975e-06,
2366
+ "loss": 0.7177,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 1.94,
2371
+ "learning_rate": 5.867878142316221e-06,
2372
+ "loss": 0.6835,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 1.94,
2377
+ "learning_rate": 5.8194480767976e-06,
2378
+ "loss": 0.6968,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 1.95,
2383
+ "learning_rate": 5.7711365412880895e-06,
2384
+ "loss": 0.7083,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 1.95,
2389
+ "learning_rate": 5.7229449055510335e-06,
2390
+ "loss": 0.7044,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 1.96,
2395
+ "learning_rate": 5.674874535950279e-06,
2396
+ "loss": 0.726,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 1.96,
2401
+ "learning_rate": 5.626926795411447e-06,
2402
+ "loss": 0.7067,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 1.97,
2407
+ "learning_rate": 5.579103043383305e-06,
2408
+ "loss": 0.7142,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 1.97,
2413
+ "learning_rate": 5.531404635799191e-06,
2414
+ "loss": 0.683,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 1.98,
2419
+ "learning_rate": 5.4838329250386076e-06,
2420
+ "loss": 0.7678,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 1.98,
2425
+ "learning_rate": 5.436389259888841e-06,
2426
+ "loss": 0.7412,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 1.99,
2431
+ "learning_rate": 5.38907498550674e-06,
2432
+ "loss": 0.6633,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 1.99,
2437
+ "learning_rate": 5.341891443380585e-06,
2438
+ "loss": 0.7275,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 2.0,
2443
+ "learning_rate": 5.294839971292026e-06,
2444
+ "loss": 0.7442,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 2.0,
2449
+ "learning_rate": 5.247921903278177e-06,
2450
+ "loss": 0.5863,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 2.01,
2455
+ "learning_rate": 5.20113856959378e-06,
2456
+ "loss": 0.5114,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 2.01,
2461
+ "learning_rate": 5.1544912966735e-06,
2462
+ "loss": 0.4919,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 2.02,
2467
+ "learning_rate": 5.1079814070943e-06,
2468
+ "loss": 0.4947,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 2.02,
2473
+ "learning_rate": 5.06161021953796e-06,
2474
+ "loss": 0.4232,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 2.03,
2479
+ "learning_rate": 5.015379048753669e-06,
2480
+ "loss": 0.4932,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 2.03,
2485
+ "learning_rate": 4.9692892055207784e-06,
2486
+ "loss": 0.4826,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 2.04,
2491
+ "learning_rate": 4.923341996611604e-06,
2492
+ "loss": 0.4494,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 2.04,
2497
+ "learning_rate": 4.877538724754392e-06,
2498
+ "loss": 0.4591,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 2.05,
2503
+ "learning_rate": 4.831880688596392e-06,
2504
+ "loss": 0.4472,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 2.05,
2509
+ "learning_rate": 4.7863691826670146e-06,
2510
+ "loss": 0.4529,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 2.06,
2515
+ "learning_rate": 4.741005497341154e-06,
2516
+ "loss": 0.4585,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 2.06,
2521
+ "learning_rate": 4.695790918802577e-06,
2522
+ "loss": 0.4115,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 2.07,
2527
+ "learning_rate": 4.650726729007465e-06,
2528
+ "loss": 0.4276,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 2.07,
2533
+ "learning_rate": 4.605814205648087e-06,
2534
+ "loss": 0.4427,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 2.08,
2539
+ "learning_rate": 4.56105462211654e-06,
2540
+ "loss": 0.4245,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 2.08,
2545
+ "learning_rate": 4.516449247468666e-06,
2546
+ "loss": 0.422,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 2.09,
2551
+ "learning_rate": 4.4719993463880695e-06,
2552
+ "loss": 0.4592,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 2.09,
2557
+ "learning_rate": 4.427706179150247e-06,
2558
+ "loss": 0.4255,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 2.1,
2563
+ "learning_rate": 4.383571001586883e-06,
2564
+ "loss": 0.4619,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 2.1,
2569
+ "learning_rate": 4.339595065050206e-06,
2570
+ "loss": 0.4163,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 2.11,
2575
+ "learning_rate": 4.29577961637754e-06,
2576
+ "loss": 0.4294,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 2.11,
2581
+ "learning_rate": 4.2521258978559324e-06,
2582
+ "loss": 0.4463,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 2.12,
2587
+ "learning_rate": 4.208635147186956e-06,
2588
+ "loss": 0.4894,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 2.12,
2593
+ "learning_rate": 4.165308597451586e-06,
2594
+ "loss": 0.4288,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 2.13,
2599
+ "learning_rate": 4.12214747707527e-06,
2600
+ "loss": 0.4102,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 2.13,
2605
+ "learning_rate": 4.079153009793068e-06,
2606
+ "loss": 0.423,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 2.14,
2611
+ "learning_rate": 4.036326414614985e-06,
2612
+ "loss": 0.487,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 2.14,
2617
+ "learning_rate": 3.99366890579139e-06,
2618
+ "loss": 0.4535,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 2.15,
2623
+ "learning_rate": 3.951181692778594e-06,
2624
+ "loss": 0.4487,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 2.15,
2629
+ "learning_rate": 3.908865980204555e-06,
2630
+ "loss": 0.4521,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 2.15,
2635
+ "learning_rate": 3.86672296783474e-06,
2636
+ "loss": 0.463,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 2.16,
2641
+ "learning_rate": 3.824753850538082e-06,
2642
+ "loss": 0.4689,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 2.16,
2647
+ "learning_rate": 3.782959818253126e-06,
2648
+ "loss": 0.4369,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 2.17,
2653
+ "learning_rate": 3.741342055954269e-06,
2654
+ "loss": 0.4343,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 2.17,
2659
+ "learning_rate": 3.699901743618194e-06,
2660
+ "loss": 0.4261,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 2.18,
2665
+ "learning_rate": 3.658640056190378e-06,
2666
+ "loss": 0.4125,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 2.18,
2671
+ "learning_rate": 3.617558163551802e-06,
2672
+ "loss": 0.3918,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 2.19,
2677
+ "learning_rate": 3.576657230485775e-06,
2678
+ "loss": 0.4519,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 2.19,
2683
+ "learning_rate": 3.5359384166449185e-06,
2684
+ "loss": 0.3847,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 2.2,
2689
+ "learning_rate": 3.4954028765182633e-06,
2690
+ "loss": 0.4199,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 2.2,
2695
+ "learning_rate": 3.4550517593985512e-06,
2696
+ "loss": 0.4449,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 2.21,
2701
+ "learning_rate": 3.414886209349615e-06,
2702
+ "loss": 0.4275,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 2.21,
2707
+ "learning_rate": 3.3749073651739594e-06,
2708
+ "loss": 0.4564,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 2.22,
2713
+ "learning_rate": 3.3351163603804805e-06,
2714
+ "loss": 0.4253,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 2.22,
2719
+ "learning_rate": 3.2955143231523067e-06,
2720
+ "loss": 0.4366,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 2.23,
2725
+ "learning_rate": 3.2561023763148237e-06,
2726
+ "loss": 0.4718,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 2.23,
2731
+ "learning_rate": 3.216881637303839e-06,
2732
+ "loss": 0.4429,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 2.24,
2737
+ "learning_rate": 3.177853218133905e-06,
2738
+ "loss": 0.4214,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 2.24,
2743
+ "learning_rate": 3.1390182253667745e-06,
2744
+ "loss": 0.4234,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 2.25,
2749
+ "learning_rate": 3.100377760080041e-06,
2750
+ "loss": 0.4365,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 2.25,
2755
+ "learning_rate": 3.0619329178359103e-06,
2756
+ "loss": 0.4444,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 2.26,
2761
+ "learning_rate": 3.023684788650154e-06,
2762
+ "loss": 0.4314,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 2.26,
2767
+ "learning_rate": 2.985634456961184e-06,
2768
+ "loss": 0.4395,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 2.27,
2773
+ "learning_rate": 2.947783001599315e-06,
2774
+ "loss": 0.4851,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 2.27,
2779
+ "learning_rate": 2.9101314957561864e-06,
2780
+ "loss": 0.3633,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 2.28,
2785
+ "learning_rate": 2.8726810069543156e-06,
2786
+ "loss": 0.432,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 2.28,
2791
+ "learning_rate": 2.8354325970168483e-06,
2792
+ "loss": 0.4671,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 2.29,
2797
+ "learning_rate": 2.7983873220374415e-06,
2798
+ "loss": 0.4615,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 2.29,
2803
+ "learning_rate": 2.7615462323503186e-06,
2804
+ "loss": 0.4466,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 2.3,
2809
+ "learning_rate": 2.724910372500508e-06,
2810
+ "loss": 0.458,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 2.3,
2815
+ "learning_rate": 2.6884807812142043e-06,
2816
+ "loss": 0.4213,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 2.31,
2821
+ "learning_rate": 2.6522584913693295e-06,
2822
+ "loss": 0.4517,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 2.31,
2827
+ "learning_rate": 2.616244529966244e-06,
2828
+ "loss": 0.4105,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 2.32,
2833
+ "learning_rate": 2.5804399180986417e-06,
2834
+ "loss": 0.4236,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 2.32,
2839
+ "learning_rate": 2.544845670924575e-06,
2840
+ "loss": 0.4245,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 2.33,
2845
+ "learning_rate": 2.509462797637693e-06,
2846
+ "loss": 0.4318,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 2.33,
2851
+ "learning_rate": 2.4742923014386154e-06,
2852
+ "loss": 0.3908,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 2.34,
2857
+ "learning_rate": 2.4393351795065023e-06,
2858
+ "loss": 0.4559,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 2.34,
2863
+ "learning_rate": 2.4045924229707663e-06,
2864
+ "loss": 0.4862,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 2.35,
2869
+ "learning_rate": 2.3700650168829765e-06,
2870
+ "loss": 0.4139,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 2.35,
2875
+ "learning_rate": 2.3357539401889438e-06,
2876
+ "loss": 0.4393,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 2.36,
2881
+ "learning_rate": 2.3016601657009364e-06,
2882
+ "loss": 0.4537,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 2.36,
2887
+ "learning_rate": 2.2677846600701305e-06,
2888
+ "loss": 0.4239,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 2.37,
2893
+ "learning_rate": 2.234128383759174e-06,
2894
+ "loss": 0.4312,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 2.37,
2899
+ "learning_rate": 2.2006922910149743e-06,
2900
+ "loss": 0.4238,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 2.38,
2905
+ "learning_rate": 2.167477329841633e-06,
2906
+ "loss": 0.4689,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 2.38,
2911
+ "learning_rate": 2.1344844419735757e-06,
2912
+ "loss": 0.4004,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 2.39,
2917
+ "learning_rate": 2.101714562848841e-06,
2918
+ "loss": 0.4577,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 2.39,
2923
+ "learning_rate": 2.069168621582567e-06,
2924
+ "loss": 0.4204,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 2.4,
2929
+ "learning_rate": 2.0368475409406396e-06,
2930
+ "loss": 0.4826,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 2.4,
2935
+ "learning_rate": 2.004752237313544e-06,
2936
+ "loss": 0.4636,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 2.41,
2941
+ "learning_rate": 1.972883620690366e-06,
2942
+ "loss": 0.4174,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 2.41,
2947
+ "learning_rate": 1.9412425946329994e-06,
2948
+ "loss": 0.4311,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 2.42,
2953
+ "learning_rate": 1.9098300562505266e-06,
2954
+ "loss": 0.4239,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 2.42,
2959
+ "learning_rate": 1.8786468961737902e-06,
2960
+ "loss": 0.4125,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 2.43,
2965
+ "learning_rate": 1.8476939985301257e-06,
2966
+ "loss": 0.4474,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 2.43,
2971
+ "learning_rate": 1.81697224091831e-06,
2972
+ "loss": 0.445,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 2.44,
2977
+ "learning_rate": 1.7864824943836633e-06,
2978
+ "loss": 0.4162,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 2.44,
2983
+ "learning_rate": 1.7562256233933717e-06,
2984
+ "loss": 0.4416,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 2.45,
2989
+ "learning_rate": 1.7262024858119597e-06,
2990
+ "loss": 0.4212,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 2.45,
2995
+ "learning_rate": 1.6964139328769736e-06,
2996
+ "loss": 0.4356,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 2.46,
3001
+ "learning_rate": 1.6668608091748495e-06,
3002
+ "loss": 0.4489,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 2.46,
3007
+ "learning_rate": 1.637543952616969e-06,
3008
+ "loss": 0.4549,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 2.46,
3013
+ "learning_rate": 1.6084641944158918e-06,
3014
+ "loss": 0.4131,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 2.47,
3019
+ "learning_rate": 1.5796223590617987e-06,
3020
+ "loss": 0.4196,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 2.47,
3025
+ "learning_rate": 1.5510192642991073e-06,
3026
+ "loss": 0.4443,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 2.48,
3031
+ "learning_rate": 1.522655721103291e-06,
3032
+ "loss": 0.4087,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 2.48,
3037
+ "learning_rate": 1.494532533657893e-06,
3038
+ "loss": 0.4409,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 2.49,
3043
+ "learning_rate": 1.4666504993317089e-06,
3044
+ "loss": 0.407,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 2.49,
3049
+ "learning_rate": 1.4390104086561886e-06,
3050
+ "loss": 0.4481,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 2.5,
3055
+ "learning_rate": 1.4116130453030296e-06,
3056
+ "loss": 0.4625,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 2.5,
3061
+ "learning_rate": 1.3844591860619382e-06,
3062
+ "loss": 0.4363,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 2.51,
3067
+ "learning_rate": 1.3575496008186307e-06,
3068
+ "loss": 0.4298,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 2.51,
3073
+ "learning_rate": 1.330885052532981e-06,
3074
+ "loss": 0.405,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 2.52,
3079
+ "learning_rate": 1.3044662972174005e-06,
3080
+ "loss": 0.4165,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 2.52,
3085
+ "learning_rate": 1.2782940839154113e-06,
3086
+ "loss": 0.4492,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 2.53,
3091
+ "learning_rate": 1.2523691546803872e-06,
3092
+ "loss": 0.4582,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 2.53,
3097
+ "learning_rate": 1.2266922445545348e-06,
3098
+ "loss": 0.44,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 2.54,
3103
+ "learning_rate": 1.201264081548038e-06,
3104
+ "loss": 0.4304,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 2.54,
3109
+ "learning_rate": 1.176085386618434e-06,
3110
+ "loss": 0.4966,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 2.55,
3115
+ "learning_rate": 1.151156873650151e-06,
3116
+ "loss": 0.3895,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 2.55,
3121
+ "learning_rate": 1.1264792494342858e-06,
3122
+ "loss": 0.4196,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 2.56,
3127
+ "learning_rate": 1.1020532136485517e-06,
3128
+ "loss": 0.4984,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 2.56,
3133
+ "learning_rate": 1.0778794588374542e-06,
3134
+ "loss": 0.4391,
3135
+ "step": 521
3136
+ },
3137
+ {
3138
+ "epoch": 2.57,
3139
+ "learning_rate": 1.0539586703926396e-06,
3140
+ "loss": 0.4464,
3141
+ "step": 522
3142
+ },
3143
+ {
3144
+ "epoch": 2.57,
3145
+ "learning_rate": 1.0302915265334722e-06,
3146
+ "loss": 0.3909,
3147
+ "step": 523
3148
+ },
3149
+ {
3150
+ "epoch": 2.58,
3151
+ "learning_rate": 1.0068786982878087e-06,
3152
+ "loss": 0.4732,
3153
+ "step": 524
3154
+ },
3155
+ {
3156
+ "epoch": 2.58,
3157
+ "learning_rate": 9.837208494729567e-07,
3158
+ "loss": 0.4233,
3159
+ "step": 525
3160
+ },
3161
+ {
3162
+ "epoch": 2.59,
3163
+ "learning_rate": 9.608186366768746e-07,
3164
+ "loss": 0.3783,
3165
+ "step": 526
3166
+ },
3167
+ {
3168
+ "epoch": 2.59,
3169
+ "learning_rate": 9.381727092395365e-07,
3170
+ "loss": 0.4481,
3171
+ "step": 527
3172
+ },
3173
+ {
3174
+ "epoch": 2.6,
3175
+ "learning_rate": 9.157837092345334e-07,
3176
+ "loss": 0.3971,
3177
+ "step": 528
3178
+ },
3179
+ {
3180
+ "epoch": 2.6,
3181
+ "learning_rate": 8.936522714508678e-07,
3182
+ "loss": 0.4148,
3183
+ "step": 529
3184
+ },
3185
+ {
3186
+ "epoch": 2.61,
3187
+ "learning_rate": 8.71779023374949e-07,
3188
+ "loss": 0.4521,
3189
+ "step": 530
3190
+ },
3191
+ {
3192
+ "epoch": 2.61,
3193
+ "learning_rate": 8.501645851728091e-07,
3194
+ "loss": 0.4385,
3195
+ "step": 531
3196
+ },
3197
+ {
3198
+ "epoch": 2.62,
3199
+ "learning_rate": 8.28809569672514e-07,
3200
+ "loss": 0.45,
3201
+ "step": 532
3202
+ },
3203
+ {
3204
+ "epoch": 2.62,
3205
+ "learning_rate": 8.077145823467924e-07,
3206
+ "loss": 0.4451,
3207
+ "step": 533
3208
+ },
3209
+ {
3210
+ "epoch": 2.63,
3211
+ "learning_rate": 7.868802212958704e-07,
3212
+ "loss": 0.422,
3213
+ "step": 534
3214
+ },
3215
+ {
3216
+ "epoch": 2.63,
3217
+ "learning_rate": 7.663070772305081e-07,
3218
+ "loss": 0.4169,
3219
+ "step": 535
3220
+ },
3221
+ {
3222
+ "epoch": 2.64,
3223
+ "learning_rate": 7.459957334552526e-07,
3224
+ "loss": 0.4027,
3225
+ "step": 536
3226
+ },
3227
+ {
3228
+ "epoch": 2.64,
3229
+ "learning_rate": 7.259467658519026e-07,
3230
+ "loss": 0.4028,
3231
+ "step": 537
3232
+ },
3233
+ {
3234
+ "epoch": 2.65,
3235
+ "learning_rate": 7.061607428631823e-07,
3236
+ "loss": 0.4596,
3237
+ "step": 538
3238
+ },
3239
+ {
3240
+ "epoch": 2.65,
3241
+ "learning_rate": 6.866382254766158e-07,
3242
+ "loss": 0.4284,
3243
+ "step": 539
3244
+ },
3245
+ {
3246
+ "epoch": 2.66,
3247
+ "learning_rate": 6.673797672086335e-07,
3248
+ "loss": 0.4251,
3249
+ "step": 540
3250
+ },
3251
+ {
3252
+ "epoch": 2.66,
3253
+ "learning_rate": 6.483859140888648e-07,
3254
+ "loss": 0.4133,
3255
+ "step": 541
3256
+ },
3257
+ {
3258
+ "epoch": 2.67,
3259
+ "learning_rate": 6.296572046446725e-07,
3260
+ "loss": 0.4055,
3261
+ "step": 542
3262
+ },
3263
+ {
3264
+ "epoch": 2.67,
3265
+ "learning_rate": 6.111941698858681e-07,
3266
+ "loss": 0.4299,
3267
+ "step": 543
3268
+ },
3269
+ {
3270
+ "epoch": 2.68,
3271
+ "learning_rate": 5.929973332896677e-07,
3272
+ "loss": 0.4764,
3273
+ "step": 544
3274
+ },
3275
+ {
3276
+ "epoch": 2.68,
3277
+ "learning_rate": 5.750672107858435e-07,
3278
+ "loss": 0.4054,
3279
+ "step": 545
3280
+ },
3281
+ {
3282
+ "epoch": 2.69,
3283
+ "learning_rate": 5.574043107421023e-07,
3284
+ "loss": 0.4513,
3285
+ "step": 546
3286
+ },
3287
+ {
3288
+ "epoch": 2.69,
3289
+ "learning_rate": 5.400091339496638e-07,
3290
+ "loss": 0.415,
3291
+ "step": 547
3292
+ },
3293
+ {
3294
+ "epoch": 2.7,
3295
+ "learning_rate": 5.228821736090684e-07,
3296
+ "loss": 0.4152,
3297
+ "step": 548
3298
+ },
3299
+ {
3300
+ "epoch": 2.7,
3301
+ "learning_rate": 5.060239153161872e-07,
3302
+ "loss": 0.4445,
3303
+ "step": 549
3304
+ },
3305
+ {
3306
+ "epoch": 2.71,
3307
+ "learning_rate": 4.894348370484648e-07,
3308
+ "loss": 0.41,
3309
+ "step": 550
3310
+ },
3311
+ {
3312
+ "epoch": 2.71,
3313
+ "learning_rate": 4.731154091513546e-07,
3314
+ "loss": 0.4057,
3315
+ "step": 551
3316
+ },
3317
+ {
3318
+ "epoch": 2.72,
3319
+ "learning_rate": 4.570660943249927e-07,
3320
+ "loss": 0.4434,
3321
+ "step": 552
3322
+ },
3323
+ {
3324
+ "epoch": 2.72,
3325
+ "learning_rate": 4.412873476110702e-07,
3326
+ "loss": 0.4426,
3327
+ "step": 553
3328
+ },
3329
+ {
3330
+ "epoch": 2.73,
3331
+ "learning_rate": 4.2577961637994544e-07,
3332
+ "loss": 0.45,
3333
+ "step": 554
3334
+ },
3335
+ {
3336
+ "epoch": 2.73,
3337
+ "learning_rate": 4.1054334031794373e-07,
3338
+ "loss": 0.4599,
3339
+ "step": 555
3340
+ },
3341
+ {
3342
+ "epoch": 2.74,
3343
+ "learning_rate": 3.955789514149022e-07,
3344
+ "loss": 0.4295,
3345
+ "step": 556
3346
+ },
3347
+ {
3348
+ "epoch": 2.74,
3349
+ "learning_rate": 3.808868739519167e-07,
3350
+ "loss": 0.4513,
3351
+ "step": 557
3352
+ },
3353
+ {
3354
+ "epoch": 2.75,
3355
+ "learning_rate": 3.6646752448931345e-07,
3356
+ "loss": 0.4506,
3357
+ "step": 558
3358
+ },
3359
+ {
3360
+ "epoch": 2.75,
3361
+ "learning_rate": 3.5232131185484075e-07,
3362
+ "loss": 0.4185,
3363
+ "step": 559
3364
+ },
3365
+ {
3366
+ "epoch": 2.76,
3367
+ "learning_rate": 3.3844863713207276e-07,
3368
+ "loss": 0.4606,
3369
+ "step": 560
3370
+ },
3371
+ {
3372
+ "epoch": 2.76,
3373
+ "learning_rate": 3.2484989364904295e-07,
3374
+ "loss": 0.4261,
3375
+ "step": 561
3376
+ },
3377
+ {
3378
+ "epoch": 2.77,
3379
+ "learning_rate": 3.115254669670864e-07,
3380
+ "loss": 0.4821,
3381
+ "step": 562
3382
+ },
3383
+ {
3384
+ "epoch": 2.77,
3385
+ "learning_rate": 2.984757348699152e-07,
3386
+ "loss": 0.4288,
3387
+ "step": 563
3388
+ },
3389
+ {
3390
+ "epoch": 2.77,
3391
+ "learning_rate": 2.857010673529015e-07,
3392
+ "loss": 0.4432,
3393
+ "step": 564
3394
+ },
3395
+ {
3396
+ "epoch": 2.78,
3397
+ "learning_rate": 2.7320182661258687e-07,
3398
+ "loss": 0.4424,
3399
+ "step": 565
3400
+ },
3401
+ {
3402
+ "epoch": 2.78,
3403
+ "learning_rate": 2.6097836703641856e-07,
3404
+ "loss": 0.4282,
3405
+ "step": 566
3406
+ },
3407
+ {
3408
+ "epoch": 2.79,
3409
+ "learning_rate": 2.4903103519269724e-07,
3410
+ "loss": 0.4308,
3411
+ "step": 567
3412
+ },
3413
+ {
3414
+ "epoch": 2.79,
3415
+ "learning_rate": 2.3736016982075172e-07,
3416
+ "loss": 0.4351,
3417
+ "step": 568
3418
+ },
3419
+ {
3420
+ "epoch": 2.8,
3421
+ "learning_rate": 2.2596610182133328e-07,
3422
+ "loss": 0.4643,
3423
+ "step": 569
3424
+ },
3425
+ {
3426
+ "epoch": 2.8,
3427
+ "learning_rate": 2.1484915424723973e-07,
3428
+ "loss": 0.4021,
3429
+ "step": 570
3430
+ },
3431
+ {
3432
+ "epoch": 2.81,
3433
+ "learning_rate": 2.0400964229414732e-07,
3434
+ "loss": 0.4636,
3435
+ "step": 571
3436
+ },
3437
+ {
3438
+ "epoch": 2.81,
3439
+ "learning_rate": 1.9344787329168002e-07,
3440
+ "loss": 0.4147,
3441
+ "step": 572
3442
+ },
3443
+ {
3444
+ "epoch": 2.82,
3445
+ "learning_rate": 1.831641466946954e-07,
3446
+ "loss": 0.4403,
3447
+ "step": 573
3448
+ },
3449
+ {
3450
+ "epoch": 2.82,
3451
+ "learning_rate": 1.731587540747903e-07,
3452
+ "loss": 0.4198,
3453
+ "step": 574
3454
+ },
3455
+ {
3456
+ "epoch": 2.83,
3457
+ "learning_rate": 1.6343197911203978e-07,
3458
+ "loss": 0.427,
3459
+ "step": 575
3460
+ },
3461
+ {
3462
+ "epoch": 2.83,
3463
+ "learning_rate": 1.5398409758695e-07,
3464
+ "loss": 0.4248,
3465
+ "step": 576
3466
+ },
3467
+ {
3468
+ "epoch": 2.84,
3469
+ "learning_rate": 1.448153773726402e-07,
3470
+ "loss": 0.4289,
3471
+ "step": 577
3472
+ },
3473
+ {
3474
+ "epoch": 2.84,
3475
+ "learning_rate": 1.3592607842724648e-07,
3476
+ "loss": 0.4722,
3477
+ "step": 578
3478
+ },
3479
+ {
3480
+ "epoch": 2.85,
3481
+ "learning_rate": 1.2731645278655448e-07,
3482
+ "loss": 0.4236,
3483
+ "step": 579
3484
+ },
3485
+ {
3486
+ "epoch": 2.85,
3487
+ "learning_rate": 1.1898674455685045e-07,
3488
+ "loss": 0.4246,
3489
+ "step": 580
3490
+ },
3491
+ {
3492
+ "epoch": 2.86,
3493
+ "learning_rate": 1.109371899080025e-07,
3494
+ "loss": 0.4101,
3495
+ "step": 581
3496
+ },
3497
+ {
3498
+ "epoch": 2.86,
3499
+ "learning_rate": 1.0316801706676038e-07,
3500
+ "loss": 0.4121,
3501
+ "step": 582
3502
+ },
3503
+ {
3504
+ "epoch": 2.87,
3505
+ "learning_rate": 9.56794463102917e-08,
3506
+ "loss": 0.4444,
3507
+ "step": 583
3508
+ },
3509
+ {
3510
+ "epoch": 2.87,
3511
+ "learning_rate": 8.847168995992916e-08,
3512
+ "loss": 0.4051,
3513
+ "step": 584
3514
+ },
3515
+ {
3516
+ "epoch": 2.88,
3517
+ "learning_rate": 8.154495237515436e-08,
3518
+ "loss": 0.4471,
3519
+ "step": 585
3520
+ },
3521
+ {
3522
+ "epoch": 2.88,
3523
+ "learning_rate": 7.489942994780452e-08,
3524
+ "loss": 0.4233,
3525
+ "step": 586
3526
+ },
3527
+ {
3528
+ "epoch": 2.89,
3529
+ "learning_rate": 6.853531109650147e-08,
3530
+ "loss": 0.4291,
3531
+ "step": 587
3532
+ },
3533
+ {
3534
+ "epoch": 2.89,
3535
+ "learning_rate": 6.245277626131142e-08,
3536
+ "loss": 0.4223,
3537
+ "step": 588
3538
+ },
3539
+ {
3540
+ "epoch": 2.9,
3541
+ "learning_rate": 5.665199789862907e-08,
3542
+ "loss": 0.453,
3543
+ "step": 589
3544
+ },
3545
+ {
3546
+ "epoch": 2.9,
3547
+ "learning_rate": 5.113314047628493e-08,
3548
+ "loss": 0.4441,
3549
+ "step": 590
3550
+ },
3551
+ {
3552
+ "epoch": 2.91,
3553
+ "learning_rate": 4.589636046888779e-08,
3554
+ "loss": 0.4321,
3555
+ "step": 591
3556
+ },
3557
+ {
3558
+ "epoch": 2.91,
3559
+ "learning_rate": 4.094180635338396e-08,
3560
+ "loss": 0.4269,
3561
+ "step": 592
3562
+ },
3563
+ {
3564
+ "epoch": 2.92,
3565
+ "learning_rate": 3.626961860484723e-08,
3566
+ "loss": 0.4322,
3567
+ "step": 593
3568
+ },
3569
+ {
3570
+ "epoch": 2.92,
3571
+ "learning_rate": 3.187992969249876e-08,
3572
+ "loss": 0.4437,
3573
+ "step": 594
3574
+ },
3575
+ {
3576
+ "epoch": 2.93,
3577
+ "learning_rate": 2.7772864075950036e-08,
3578
+ "loss": 0.4586,
3579
+ "step": 595
3580
+ },
3581
+ {
3582
+ "epoch": 2.93,
3583
+ "learning_rate": 2.3948538201672423e-08,
3584
+ "loss": 0.3856,
3585
+ "step": 596
3586
+ },
3587
+ {
3588
+ "epoch": 2.94,
3589
+ "learning_rate": 2.040706049970087e-08,
3590
+ "loss": 0.4119,
3591
+ "step": 597
3592
+ },
3593
+ {
3594
+ "epoch": 2.94,
3595
+ "learning_rate": 1.7148531380550836e-08,
3596
+ "loss": 0.4226,
3597
+ "step": 598
3598
+ },
3599
+ {
3600
+ "epoch": 2.95,
3601
+ "learning_rate": 1.4173043232380557e-08,
3602
+ "loss": 0.482,
3603
+ "step": 599
3604
+ },
3605
+ {
3606
+ "epoch": 2.95,
3607
+ "learning_rate": 1.1480680418365364e-08,
3608
+ "loss": 0.4239,
3609
+ "step": 600
3610
+ },
3611
+ {
3612
+ "epoch": 2.96,
3613
+ "learning_rate": 9.071519274308494e-09,
3614
+ "loss": 0.4413,
3615
+ "step": 601
3616
+ },
3617
+ {
3618
+ "epoch": 2.96,
3619
+ "learning_rate": 6.945628106477254e-09,
3620
+ "loss": 0.4437,
3621
+ "step": 602
3622
+ },
3623
+ {
3624
+ "epoch": 2.97,
3625
+ "learning_rate": 5.1030671896623585e-09,
3626
+ "loss": 0.4167,
3627
+ "step": 603
3628
+ },
3629
+ {
3630
+ "epoch": 2.97,
3631
+ "learning_rate": 3.5438887654737355e-09,
3632
+ "loss": 0.4708,
3633
+ "step": 604
3634
+ },
3635
+ {
3636
+ "epoch": 2.98,
3637
+ "learning_rate": 2.268137040859486e-09,
3638
+ "loss": 0.4238,
3639
+ "step": 605
3640
+ },
3641
+ {
3642
+ "epoch": 2.98,
3643
+ "learning_rate": 1.275848186845785e-09,
3644
+ "loss": 0.4461,
3645
+ "step": 606
3646
+ },
3647
+ {
3648
+ "epoch": 2.99,
3649
+ "learning_rate": 5.670503375188041e-10,
3650
+ "loss": 0.4198,
3651
+ "step": 607
3652
+ },
3653
+ {
3654
+ "epoch": 2.99,
3655
+ "learning_rate": 1.4176358922535216e-10,
3656
+ "loss": 0.4303,
3657
+ "step": 608
3658
+ },
3659
+ {
3660
+ "epoch": 3.0,
3661
+ "learning_rate": 0.0,
3662
+ "loss": 0.4549,
3663
+ "step": 609
3664
+ },
3665
+ {
3666
+ "epoch": 3.0,
3667
+ "step": 609,
3668
+ "total_flos": 1.504599665142661e+17,
3669
+ "train_loss": 0.7446256145370026,
3670
+ "train_runtime": 2516.2407,
3671
+ "train_samples_per_second": 62.0,
3672
+ "train_steps_per_second": 0.242
3673
+ }
3674
+ ],
3675
+ "logging_steps": 1.0,
3676
+ "max_steps": 609,
3677
+ "num_input_tokens_seen": 0,
3678
+ "num_train_epochs": 3,
3679
+ "save_steps": 2000,
3680
+ "total_flos": 1.504599665142661e+17,
3681
+ "train_batch_size": 4,
3682
+ "trial_name": null,
3683
+ "trial_params": null
3684
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bf885668f01c50fb6216961f2bffa8b7bdfcc079430f28e09c78570dbc4fd2b
3
+ size 4920