bart-base-cnn-swe / README.md
Gabriel's picture
Update README.md
e15a8c7
|
raw
history blame
2.2 kB
metadata
language: sv
license: mit
metrics:
  - rouge
model-index:
  - name: bart-base-cnn-swe
    results:
      - task:
          type: summarization
          name: summarization
        dataset:
          name: Gabriel/cnn_daily_swe
          type: Gabriel/cnn_daily_swe
          split: validation
        metrics:
          - name: Validation ROGUE-1
            type: rouge-1
            value: 21.7291
            verified: true
          - name: Validation ROGUE-2
            type: rouge-2
            value: 10.0209
            verified: true
          - name: Validation ROGUE-L
            type: rouge-l
            value: 17.775
            verified: true
datasets:
  - Gabriel/cnn_daily_swe
tags:
  - summarization
widget: null
'-text': >-
  Minst två personer dödades i en misstänkt bomb attack på en personbuss i de
  stridiga södra filippiner på måndag, sade militären.

bart-base-cnn-swe

This model is a fine-tuned version of KBLab/bart-base-swedish-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1656
  • Rouge1: 21.7291
  • Rouge2: 10.0209
  • Rougel: 17.775
  • Rougelsum: 20.429
  • Gen Len: 19.9931

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.3512 1.0 17944 2.1656 21.7291 10.0209 17.775 20.429 19.9931

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1