|
from typing import Dict, Any |
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration |
|
from PIL import Image |
|
import io |
|
import base64 |
|
import requests |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.processor = AutoProcessor.from_pretrained(path) |
|
self.model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
path, device_map="auto" |
|
) |
|
self.model.to(device) |
|
|
|
def __call__(self, data: Any) -> Dict[str, Any]: |
|
inputs = data.pop("inputs", data) |
|
image_input = inputs.get('image') |
|
text_input = inputs.get('text', "Describe this image.") |
|
|
|
if not image_input: |
|
return {"error": "No image provided."} |
|
|
|
try: |
|
if image_input.startswith('http'): |
|
response = requests.get(image_input, stream=True) |
|
if response.status_code == 200: |
|
image = Image.open(response.raw).convert('RGB') |
|
else: |
|
return {"error": f"Failed to fetch image. Status code: {response.status_code}"} |
|
else: |
|
image_data = base64.b64decode(image_input) |
|
image = Image.open(io.BytesIO(image_data)).convert('RGB') |
|
except Exception as e: |
|
return {"error": f"Failed to process the image. Details: {str(e)}"} |
|
|
|
try: |
|
conversation = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image"}, |
|
{"type": "text", "text": text_input}, |
|
], |
|
} |
|
] |
|
|
|
text_prompt = self.processor.apply_chat_template( |
|
conversation, add_generation_prompt=True |
|
) |
|
|
|
inputs = self.processor( |
|
text=[text_prompt], |
|
images=[image], |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
|
|
inputs = inputs.to(device) |
|
|
|
output_ids = self.model.generate( |
|
**inputs, max_new_tokens=128 |
|
) |
|
|
|
generated_ids = [ |
|
output_id[len(input_id):] for input_id, output_id in zip(inputs.input_ids, output_ids) |
|
] |
|
|
|
output_text = self.processor.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
)[0] |
|
|
|
return {"generated_text": output_text} |
|
|
|
except Exception as e: |
|
return {"error": f"Failed during generation. Details: {str(e)}"} |
|
|