|
from typing import Dict, Any |
|
import torch |
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration |
|
from PIL import Image |
|
import io |
|
import base64 |
|
import requests |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model = Qwen2VLForConditionalGeneration.from_pretrained(path).to(self.device) |
|
self.processor = AutoProcessor.from_pretrained(path) |
|
|
|
def __call__(self, data: Any) -> Dict[str, Any]: |
|
default_prompt = "Describe this image." |
|
|
|
if isinstance(data, (bytes, bytearray)): |
|
image = Image.open(io.BytesIO(data)).convert('RGB') |
|
text_input = default_prompt |
|
elif isinstance(data, dict): |
|
image_input = data.get('image', None) |
|
text_input = data.get('text', default_prompt) |
|
if image_input is None: |
|
return {"error": "No image provided."} |
|
if image_input.startswith('http'): |
|
image = Image.open(requests.get(image_input, stream=True).raw).convert('RGB') |
|
else: |
|
image_data = base64.b64decode(image_input) |
|
image = Image.open(io.BytesIO(image_data)).convert('RGB') |
|
else: |
|
return {"error": "Invalid input data. Expected binary image data or a dictionary with 'image' key."} |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": image}, |
|
{"type": "text", "text": text_input}, |
|
], |
|
} |
|
] |
|
|
|
text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = self.processor( |
|
text=[text], |
|
images=[image], |
|
padding=True, |
|
return_tensors="pt", |
|
).to(self.device) |
|
|
|
generate_ids = self.model.generate(inputs.input_ids, max_length=30) |
|
output_text = self.processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
return {"generated_text": output_text} |
|
|
|
|