|
from typing import Dict, Any |
|
from transformers import QwenImageProcessor, QwenTokenizer, QwenForMultiModalConditionalGeneration |
|
import torch |
|
from PIL import Image |
|
import io |
|
import json |
|
import base64 |
|
import requests |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model = QwenForMultiModalConditionalGeneration.from_pretrained( |
|
path, |
|
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32 |
|
).to(self.device) |
|
self.image_processor = QwenImageProcessor.from_pretrained(path) |
|
self.tokenizer = QwenTokenizer.from_pretrained(path) |
|
self.model.generation_config.use_cache = False |
|
|
|
def __call__(self, data: Any) -> Dict[str, Any]: |
|
""" |
|
Args: |
|
data (Any): The input data, which can be: |
|
- Binary image data in the request body. |
|
- A dictionary with 'image' and 'text' keys: |
|
- 'image': Base64-encoded image string or image URL. |
|
- 'text': The text prompt. |
|
|
|
Returns: |
|
Dict[str, Any]: The generated text output from the model. |
|
""" |
|
if isinstance(data, (bytes, bytearray)): |
|
image = Image.open(io.BytesIO(data)).convert('RGB') |
|
text_input = "<|im_start|>user\nDescribe this image.\n<|im_end|><|im_start|>assistant\n" |
|
elif isinstance(data, dict): |
|
image_input = data.get('image', None) |
|
text_input = data.get('text', '') |
|
if image_input is None: |
|
return {"error": "No image provided."} |
|
if image_input.startswith('http'): |
|
response = requests.get(image_input) |
|
image = Image.open(io.BytesIO(response.content)).convert('RGB') |
|
else: |
|
image_data = base64.b64decode(image_input) |
|
image = Image.open(io.BytesIO(image_data)).convert('RGB') |
|
else: |
|
return {"error": "Invalid input data. Expected binary image data or a dictionary with 'image' key."} |
|
|
|
image_inputs = self.image_processor(images=image, return_tensors="pt").to(self.device) |
|
|
|
if not text_input: |
|
text_input = "<|im_start|>user\nDescribe this image.\n<|im_end|><|im_start|>assistant\n" |
|
input_ids = self.tokenizer(text_input, return_tensors="pt").input_ids.to(self.device) |
|
|
|
generated_ids = self.model.generate( |
|
**image_inputs, |
|
input_ids=input_ids, |
|
max_new_tokens=256, |
|
do_sample=True, |
|
top_p=0.9, |
|
temperature=0.7, |
|
) |
|
output_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) |
|
|
|
return {"generated_text": output_text} |
|
|