GW12's picture
update model card README.md
c125909
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-custom-colab
    results: []

wav2vec2-custom-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7785
  • Wer: 0.3534

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4783 0.3 500 0.7199 0.5564
0.4833 0.61 1000 0.8089 0.6181
0.5733 0.91 1500 0.7617 0.5530
0.4641 1.21 2000 0.7937 0.5731
0.4167 1.52 2500 0.7993 0.5102
0.3713 1.82 3000 0.7541 0.5437
0.3395 2.12 3500 0.7658 0.5148
0.2814 2.42 4000 0.7569 0.4783
0.2698 2.73 4500 0.8126 0.5174
0.2767 3.03 5000 0.7838 0.4676
0.2249 3.33 5500 0.8769 0.4743
0.2452 3.64 6000 0.8586 0.4778
0.1828 3.94 6500 0.7695 0.4528
0.1901 4.24 7000 0.7800 0.5021
0.2062 4.55 7500 0.8107 0.4567
0.1614 4.85 8000 0.7941 0.4094
0.1327 5.15 8500 0.7900 0.4241
0.1405 5.45 9000 0.8017 0.3992
0.1219 5.76 9500 0.8099 0.4043
0.1406 6.06 10000 0.8731 0.3913
0.0806 6.36 10500 0.8387 0.3868
0.1039 6.67 11000 0.8105 0.3905
0.0967 6.97 11500 0.7291 0.3728
0.0846 7.27 12000 0.8128 0.4201
0.0722 7.58 12500 0.8204 0.3751
0.0785 7.88 13000 0.7692 0.3760
0.0647 8.18 13500 0.8294 0.3752
0.0523 8.48 14000 0.7646 0.3763
0.0623 8.79 14500 0.7773 0.3572
0.0477 9.09 15000 0.7379 0.3635
0.064 9.39 15500 0.7544 0.3538
0.0321 9.7 16000 0.8118 0.3557
0.0541 10.0 16500 0.7785 0.3534

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.10.0
  • Datasets 2.9.0
  • Tokenizers 0.13.2