update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-custom-colab
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-custom-colab
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.7785
|
20 |
+
- Wer: 0.3534
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 1
|
41 |
+
- eval_batch_size: 1
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 1000
|
46 |
+
- num_epochs: 10
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
53 |
+
| 0.4783 | 0.3 | 500 | 0.7199 | 0.5564 |
|
54 |
+
| 0.4833 | 0.61 | 1000 | 0.8089 | 0.6181 |
|
55 |
+
| 0.5733 | 0.91 | 1500 | 0.7617 | 0.5530 |
|
56 |
+
| 0.4641 | 1.21 | 2000 | 0.7937 | 0.5731 |
|
57 |
+
| 0.4167 | 1.52 | 2500 | 0.7993 | 0.5102 |
|
58 |
+
| 0.3713 | 1.82 | 3000 | 0.7541 | 0.5437 |
|
59 |
+
| 0.3395 | 2.12 | 3500 | 0.7658 | 0.5148 |
|
60 |
+
| 0.2814 | 2.42 | 4000 | 0.7569 | 0.4783 |
|
61 |
+
| 0.2698 | 2.73 | 4500 | 0.8126 | 0.5174 |
|
62 |
+
| 0.2767 | 3.03 | 5000 | 0.7838 | 0.4676 |
|
63 |
+
| 0.2249 | 3.33 | 5500 | 0.8769 | 0.4743 |
|
64 |
+
| 0.2452 | 3.64 | 6000 | 0.8586 | 0.4778 |
|
65 |
+
| 0.1828 | 3.94 | 6500 | 0.7695 | 0.4528 |
|
66 |
+
| 0.1901 | 4.24 | 7000 | 0.7800 | 0.5021 |
|
67 |
+
| 0.2062 | 4.55 | 7500 | 0.8107 | 0.4567 |
|
68 |
+
| 0.1614 | 4.85 | 8000 | 0.7941 | 0.4094 |
|
69 |
+
| 0.1327 | 5.15 | 8500 | 0.7900 | 0.4241 |
|
70 |
+
| 0.1405 | 5.45 | 9000 | 0.8017 | 0.3992 |
|
71 |
+
| 0.1219 | 5.76 | 9500 | 0.8099 | 0.4043 |
|
72 |
+
| 0.1406 | 6.06 | 10000 | 0.8731 | 0.3913 |
|
73 |
+
| 0.0806 | 6.36 | 10500 | 0.8387 | 0.3868 |
|
74 |
+
| 0.1039 | 6.67 | 11000 | 0.8105 | 0.3905 |
|
75 |
+
| 0.0967 | 6.97 | 11500 | 0.7291 | 0.3728 |
|
76 |
+
| 0.0846 | 7.27 | 12000 | 0.8128 | 0.4201 |
|
77 |
+
| 0.0722 | 7.58 | 12500 | 0.8204 | 0.3751 |
|
78 |
+
| 0.0785 | 7.88 | 13000 | 0.7692 | 0.3760 |
|
79 |
+
| 0.0647 | 8.18 | 13500 | 0.8294 | 0.3752 |
|
80 |
+
| 0.0523 | 8.48 | 14000 | 0.7646 | 0.3763 |
|
81 |
+
| 0.0623 | 8.79 | 14500 | 0.7773 | 0.3572 |
|
82 |
+
| 0.0477 | 9.09 | 15000 | 0.7379 | 0.3635 |
|
83 |
+
| 0.064 | 9.39 | 15500 | 0.7544 | 0.3538 |
|
84 |
+
| 0.0321 | 9.7 | 16000 | 0.8118 | 0.3557 |
|
85 |
+
| 0.0541 | 10.0 | 16500 | 0.7785 | 0.3534 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.26.0
|
91 |
+
- Pytorch 1.10.0
|
92 |
+
- Datasets 2.9.0
|
93 |
+
- Tokenizers 0.13.2
|