GIZ
/

ppsingh's picture
End of training
37cb065 verified
|
raw
history blame
2.59 kB
metadata
license: mit
base_model: BAAI/bge-base-en-v1.5
tags:
  - generated_from_trainer
model-index:
  - name: ADAPMIT-multilabel-bge
    results: []

ADAPMIT-multilabel-bge

This model is a fine-tuned version of BAAI/bge-base-en-v1.5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3101
  • Precision-micro: 0.9058
  • Precision-samples: 0.8647
  • Precision-weighted: 0.9058
  • Recall-micro: 0.9305
  • Recall-samples: 0.8693
  • Recall-weighted: 0.9305
  • F1-micro: 0.9180
  • F1-samples: 0.8622
  • F1-weighted: 0.9180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.08e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision-micro Precision-samples Precision-weighted Recall-micro Recall-samples Recall-weighted F1-micro F1-samples F1-weighted
0.3368 1.0 784 0.2917 0.8651 0.8450 0.8664 0.9138 0.8542 0.9138 0.8888 0.8437 0.8890
0.1807 2.0 1568 0.2549 0.9092 0.8643 0.9094 0.9156 0.8571 0.9156 0.9124 0.8571 0.9123
0.0955 3.0 2352 0.2988 0.9069 0.8660 0.9072 0.9252 0.8655 0.9252 0.9160 0.8613 0.9160
0.0495 4.0 3136 0.3101 0.9058 0.8647 0.9058 0.9305 0.8693 0.9305 0.9180 0.8622 0.9180

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2