metadata
language:
- ko
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- GGarri/customdataset
metrics:
- wer
model-index:
- name: Whisper Small ko
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: customdata
type: GGarri/customdataset
metrics:
- name: Wer
type: wer
value: 2.590564448188711
Whisper Small ko
This model is a fine-tuned version of openai/whisper-small on the customdata dataset. It achieves the following results on the evaluation set:
- Loss: 0.0041
- Cer: 2.4925
- Wer: 2.5906
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
---|---|---|---|---|---|
3.4996 | 0.89 | 25 | 3.1447 | 75.5887 | 19.7136 |
2.655 | 1.79 | 50 | 2.1647 | 74.1483 | 18.1761 |
1.7168 | 2.68 | 75 | 1.2822 | 71.8061 | 17.2283 |
0.9261 | 3.57 | 100 | 0.6754 | 63.5396 | 51.5586 |
0.4707 | 4.46 | 125 | 0.3511 | 40.5686 | 37.3842 |
0.2485 | 5.36 | 150 | 0.2027 | 27.9309 | 25.6950 |
0.1463 | 6.25 | 175 | 0.1315 | 24.7119 | 23.9890 |
0.1022 | 7.14 | 200 | 0.0881 | 21.1924 | 19.9242 |
0.0642 | 8.04 | 225 | 0.0501 | 18.7625 | 17.6917 |
0.0249 | 8.93 | 250 | 0.0144 | 27.2044 | 26.3479 |
0.0056 | 9.82 | 275 | 0.0082 | 12.4749 | 11.9208 |
0.0036 | 10.71 | 300 | 0.0067 | 8.5922 | 8.7616 |
0.0037 | 11.61 | 325 | 0.0119 | 6.4003 | 6.1500 |
0.0021 | 12.5 | 350 | 0.0054 | 3.7450 | 3.6015 |
0.0013 | 13.39 | 375 | 0.0052 | 2.8557 | 3.0329 |
0.0017 | 14.29 | 400 | 0.0062 | 9.0681 | 8.3825 |
0.0016 | 15.18 | 425 | 0.0081 | 4.9098 | 5.3917 |
0.0012 | 16.07 | 450 | 0.0108 | 14.5541 | 13.3530 |
0.0014 | 16.96 | 475 | 0.0033 | 3.4068 | 3.4120 |
0.0005 | 17.86 | 500 | 0.0041 | 2.4925 | 2.5906 |
Framework versions
- Transformers 4.39.2
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.15.2