GGarri's picture
End of training
3c852ef verified
|
raw
history blame
3.12 kB
metadata
language:
  - ko
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - GGarri/customdataset
metrics:
  - wer
model-index:
  - name: Whisper Small ko
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: customdata
          type: GGarri/customdataset
        metrics:
          - name: Wer
            type: wer
            value: 2.590564448188711

Whisper Small ko

This model is a fine-tuned version of openai/whisper-small on the customdata dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0041
  • Cer: 2.4925
  • Wer: 2.5906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
3.4996 0.89 25 3.1447 75.5887 19.7136
2.655 1.79 50 2.1647 74.1483 18.1761
1.7168 2.68 75 1.2822 71.8061 17.2283
0.9261 3.57 100 0.6754 63.5396 51.5586
0.4707 4.46 125 0.3511 40.5686 37.3842
0.2485 5.36 150 0.2027 27.9309 25.6950
0.1463 6.25 175 0.1315 24.7119 23.9890
0.1022 7.14 200 0.0881 21.1924 19.9242
0.0642 8.04 225 0.0501 18.7625 17.6917
0.0249 8.93 250 0.0144 27.2044 26.3479
0.0056 9.82 275 0.0082 12.4749 11.9208
0.0036 10.71 300 0.0067 8.5922 8.7616
0.0037 11.61 325 0.0119 6.4003 6.1500
0.0021 12.5 350 0.0054 3.7450 3.6015
0.0013 13.39 375 0.0052 2.8557 3.0329
0.0017 14.29 400 0.0062 9.0681 8.3825
0.0016 15.18 425 0.0081 4.9098 5.3917
0.0012 16.07 450 0.0108 14.5541 13.3530
0.0014 16.96 475 0.0033 3.4068 3.4120
0.0005 17.86 500 0.0041 2.4925 2.5906

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.0.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2