--- language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - GGarri/customdataset metrics: - wer model-index: - name: Whisper Small ko results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: customdata type: GGarri/customdataset metrics: - name: Wer type: wer value: 2.590564448188711 --- # Whisper Small ko This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the customdata dataset. It achieves the following results on the evaluation set: - Loss: 0.0041 - Cer: 2.4925 - Wer: 2.5906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 3.4996 | 0.89 | 25 | 3.1447 | 75.5887 | 19.7136 | | 2.655 | 1.79 | 50 | 2.1647 | 74.1483 | 18.1761 | | 1.7168 | 2.68 | 75 | 1.2822 | 71.8061 | 17.2283 | | 0.9261 | 3.57 | 100 | 0.6754 | 63.5396 | 51.5586 | | 0.4707 | 4.46 | 125 | 0.3511 | 40.5686 | 37.3842 | | 0.2485 | 5.36 | 150 | 0.2027 | 27.9309 | 25.6950 | | 0.1463 | 6.25 | 175 | 0.1315 | 24.7119 | 23.9890 | | 0.1022 | 7.14 | 200 | 0.0881 | 21.1924 | 19.9242 | | 0.0642 | 8.04 | 225 | 0.0501 | 18.7625 | 17.6917 | | 0.0249 | 8.93 | 250 | 0.0144 | 27.2044 | 26.3479 | | 0.0056 | 9.82 | 275 | 0.0082 | 12.4749 | 11.9208 | | 0.0036 | 10.71 | 300 | 0.0067 | 8.5922 | 8.7616 | | 0.0037 | 11.61 | 325 | 0.0119 | 6.4003 | 6.1500 | | 0.0021 | 12.5 | 350 | 0.0054 | 3.7450 | 3.6015 | | 0.0013 | 13.39 | 375 | 0.0052 | 2.8557 | 3.0329 | | 0.0017 | 14.29 | 400 | 0.0062 | 9.0681 | 8.3825 | | 0.0016 | 15.18 | 425 | 0.0081 | 4.9098 | 5.3917 | | 0.0012 | 16.07 | 450 | 0.0108 | 14.5541 | 13.3530 | | 0.0014 | 16.96 | 475 | 0.0033 | 3.4068 | 3.4120 | | 0.0005 | 17.86 | 500 | 0.0041 | 2.4925 | 2.5906 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.0.1 - Datasets 2.18.0 - Tokenizers 0.15.2