File size: 8,838 Bytes
d66884f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.linalg as linalg
from tqdm import tqdm
def extract_conv(
weight: nn.Parameter|torch.Tensor,
mode = 'fixed',
mode_param = 0,
device = 'cpu',
) -> tuple[nn.Parameter, nn.Parameter]:
out_ch, in_ch, kernel_size, _ = weight.shape
U, S, Vh = linalg.svd(weight.reshape(out_ch, -1).to(device))
if mode=='fixed':
lora_rank = mode_param
elif mode=='threshold':
assert mode_param>=0
lora_rank = torch.sum(S>mode_param)
elif mode=='ratio':
assert 1>=mode_param>=0
min_s = torch.max(S)*mode_param
lora_rank = torch.sum(S>min_s)
elif mode=='percentile':
assert 1>=mode_param>=0
s_cum = torch.cumsum(S, dim=0)
min_cum_sum = mode_param * torch.sum(S)
lora_rank = torch.sum(s_cum<min_cum_sum)
lora_rank = max(1, lora_rank)
lora_rank = min(out_ch, in_ch, lora_rank)
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).cpu()
extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).cpu()
del U, S, Vh, weight
return extract_weight_A, extract_weight_B
def merge_conv(
weight_a: nn.Parameter|torch.Tensor,
weight_b: nn.Parameter|torch.Tensor,
device = 'cpu'
):
rank, in_ch, kernel_size, k_ = weight_a.shape
out_ch, rank_, _, _ = weight_b.shape
assert rank == rank_ and kernel_size == k_
wa = weight_a.to(device)
wb = weight_b.to(device)
if device == 'cpu':
wa = wa.float()
wb = wb.float()
merged = wb.reshape(out_ch, -1) @ wa.reshape(rank, -1)
weight = merged.reshape(out_ch, in_ch, kernel_size, kernel_size)
del wb, wa
return weight
def extract_linear(
weight: nn.Parameter|torch.Tensor,
mode = 'fixed',
mode_param = 0,
device = 'cpu',
) -> tuple[nn.Parameter, nn.Parameter]:
out_ch, in_ch = weight.shape
U, S, Vh = linalg.svd(weight.to(device))
if mode=='fixed':
lora_rank = mode_param
elif mode=='threshold':
assert mode_param>=0
lora_rank = torch.sum(S>mode_param)
elif mode=='ratio':
assert 1>=mode_param>=0
min_s = torch.max(S)*mode_param
lora_rank = torch.sum(S>min_s)
elif mode=='percentile':
assert 1>=mode_param>=0
s_cum = torch.cumsum(S, dim=0)
min_cum_sum = mode_param * torch.sum(S)
lora_rank = torch.sum(s_cum<min_cum_sum)
lora_rank = max(1, lora_rank)
lora_rank = min(out_ch, in_ch, lora_rank)
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
extract_weight_A = Vh.reshape(lora_rank, in_ch).cpu()
extract_weight_B = U.reshape(out_ch, lora_rank).cpu()
del U, S, Vh, weight
return extract_weight_A, extract_weight_B
def merge_linear(
weight_a: nn.Parameter|torch.Tensor,
weight_b: nn.Parameter|torch.Tensor,
device = 'cpu'
):
rank, in_ch = weight_a.shape
out_ch, rank_ = weight_b.shape
assert rank == rank_
wa = weight_a.to(device)
wb = weight_b.to(device)
if device == 'cpu':
wa = wa.float()
wb = wb.float()
weight = wb @ wa
del wb, wa
return weight
def extract_diff(
base_model,
db_model,
mode = 'fixed',
linear_mode_param = 0,
conv_mode_param = 0,
extract_device = 'cpu'
):
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"Attention",
"ResnetBlock2D",
"Downsample2D",
"Upsample2D"
]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
def make_state_dict(
prefix,
root_module: torch.nn.Module,
target_module: torch.nn.Module,
target_replace_modules
):
loras = {}
temp = {}
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
temp[name] = {}
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ not in {'Linear', 'Conv2d'}:
continue
temp[name][child_name] = child_module.weight
for name, module in tqdm(list(target_module.named_modules())):
if name in temp:
weights = temp[name]
for child_name, child_module in module.named_modules():
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
layer = child_module.__class__.__name__
if layer == 'Linear':
extract_a, extract_b = extract_linear(
(child_module.weight - weights[child_name]),
mode,
linear_mode_param,
device = extract_device,
)
elif layer == 'Conv2d':
is_linear = (child_module.weight.shape[2] == 1
and child_module.weight.shape[3] == 1)
extract_a, extract_b = extract_conv(
(child_module.weight - weights[child_name]),
mode,
linear_mode_param if is_linear else conv_mode_param,
device = extract_device,
)
else:
continue
loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half()
loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half()
loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half()
del extract_a, extract_b
return loras
text_encoder_loras = make_state_dict(
LORA_PREFIX_TEXT_ENCODER,
base_model[0], db_model[0],
TEXT_ENCODER_TARGET_REPLACE_MODULE
)
unet_loras = make_state_dict(
LORA_PREFIX_UNET,
base_model[2], db_model[2],
UNET_TARGET_REPLACE_MODULE
)
print(len(text_encoder_loras), len(unet_loras))
return text_encoder_loras|unet_loras
def merge_locon(
base_model,
locon_state_dict: dict[str, torch.TensorType],
scale: float = 1.0,
device = 'cpu'
):
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"Attention",
"ResnetBlock2D",
"Downsample2D",
"Upsample2D"
]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
def merge(
prefix,
root_module: torch.nn.Module,
target_replace_modules
):
temp = {}
for name, module in tqdm(list(root_module.named_modules())):
if module.__class__.__name__ in target_replace_modules:
temp[name] = {}
for child_name, child_module in module.named_modules():
layer = child_module.__class__.__name__
if layer not in {'Linear', 'Conv2d'}:
continue
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
down = locon_state_dict[f'{lora_name}.lora_down.weight'].float()
up = locon_state_dict[f'{lora_name}.lora_up.weight'].float()
alpha = locon_state_dict[f'{lora_name}.alpha'].float()
rank = down.shape[0]
if layer == 'Conv2d':
delta = merge_conv(down, up, device)
child_module.weight.requires_grad_(False)
child_module.weight += (alpha.to(device)/rank * scale * delta).cpu()
del delta
elif layer == 'Linear':
delta = merge_linear(down, up, device)
child_module.weight.requires_grad_(False)
child_module.weight += (alpha.to(device)/rank * scale * delta).cpu()
del delta
merge(
LORA_PREFIX_TEXT_ENCODER,
base_model[0],
TEXT_ENCODER_TARGET_REPLACE_MODULE
)
merge(
LORA_PREFIX_UNET,
base_model[2],
UNET_TARGET_REPLACE_MODULE
) |